Principais micotoxicoses em suínos

  • Pollyana Cristina Maggio de Castro Souto
  • Laurinda Augusto
  • Mayra Carraro Di Gregorio
  • Carlos Augusto Fernandes de Oliveira
Palavras-chave: micotoxinas, toxicidade, suínos

Resumo

Diversas micotoxinas amplamente distribuídas na natureza possuem propriedades tóxicas
acentuadas e podem contaminar culturas de milho destinadas à alimentação humana e animal.
A aflatoxina e as fusariotoxinas (principalmente fumonisina e zearalenona) são as que mais
comumente provocam prejuízos na suinocultura. A produção das fusariotoxinas ocorre
principalmente antes da colheita, mas assim como a aflatoxina, também pode ocorrer póscolheita caso não seja tratada e seca corretamente. Os efeitos relacionados à ingestão destes
compostos são dependentes de fatores relacionados à toxina (estrutura química, dose) e ao
animal (espécies, raça, sexo, idade, condições nutricionais). Ainda, a possibilidade de
ocorrência simultânea de duas ou mais micotoxinas, pode acarretar na potencialização de seus
efeitos tóxicos sobre o organismo susceptível e, dependendo do grau de intoxicação, os
sintomas desencadeados são representados principalmente pela baixa produtividade animal,
maior susceptibilidade a doenças, o que gera grandes prejuízos econômicos. Esta revisão
apresenta aspectos gerais relacionados à toxicologia, como mecanismos de ação e efeitos em
suínos, além de dados de ocorrência de aflatoxinas, fumonisinas e zearalenona no milho
brasileiro.

Referências

1. Diaz DE. The mycotoxin blue book. Nottingham: Nottingham University Press; 2005.
2. Sabino M. Micotoxinas em alimentos. In: Oga S. Fundamentos de toxicologia. São Paulo:
Atheneu; 1996. p.461-72.
3. Hussein HS, Brasel JM. Toxicity, metabolism and impact of mycotoxin on humans and
animals. Toxicology. 2001;167:101-34.
4. Devreese M, Backer P, Croubels S. Overview of the most important mycotoxins for the pig
and poultry husbandry. Vlaams Diergeneeskd Tijdschr. 2013;82,171-80.
5. Associação Brasileira de Proteína Animal. Exportação mundial de carne suína em 2014.
São Paulo: ABPA; 2015. (Relatório Anual).
6. Wogan GN, Kensler TW, Groopman JD. Present and future directions of translational
research on aflatoxin and hepatocellular carcinoma. A review. Food Addit Contam Part A
Chem Anal Control Expo Risk Assess. 2012;29(2):249-57.
7. Jager AV, Ramalho FS, Ramalho LNZ, Oliveira CAF. Biomarkers of aflatoxin exposure
and its relationship with the hepatocellular carcinoma. In: Guevara-Gonzalez RG.
Aflatoxins - Biochemistry and molecular biology. Rijeka: Intech; 2011. p.104-26.
8. Coulombe RA. Aflatoxins. In: Sharma RP, Salunkhe DK. Mycotoxins and phytoalexins.
Boca Raton: CRC Press; 1991. p.103-43.
9. Kussak A, Andersson B, Anderson K. Immunoafinity column clean-up for the high –
performance liquid choromatographic determination of aflatoxin B1, B2, G1, G2, M1 and
Q1 in urine. J Chromatogr B Biomed Appl. 1995;672:253-59.
10. Guengerich FP. Cytochrome P450s and other enzymes in drug metabolism and toxicity.
AAPS J. 2006;8:101-11.
11. Aguillar F, Hussain SP, Cerutti P. Aflatoxin B1 induces the transversion of G-T in códon
249 of the p53 tumor suppressor gene in human hepatocytes. Proc Natl Acad Sci U S A.
1993;90:8586-90.
12. Egner PA, Yu X, Johnson JK, Nathasingh CK, Groopman JD, Kensler TW, et al.
Identification of aflatoxin M1-N7-guanine in liver and urine of tree shrews and rats
following administration of aflatoxin B1. Chem Res Toxicol. 2003;16:1174-80.
13. Patterson DSP. Metabolism as a factor in determining the toxic action of the aflatoxins in
different animal species. Food Cosmet Toxicol. 1973;11:287-94.
14. Lee S, Campbell BC, Molyneux RJ, Hasegawa S, Lee HS. Inhibitory effects of naturally
occurring compounds on aflatoxin B1 biotransformation. J Agric Food Chem.
2001;49:5171-7.
15. Diaz GJ, Murcia HW. Biotransformation of Aflatoxin B1 and its relationship with the
differential toxicological response to aflatoxin in commercial poultry species. In:
Guevara-Gonzalez RG. Aflatoxins - Biochemistry and molecular biology. Rijeka:
InTech; 2011. p.3-20.
16. Luthy J, Zweifel U, Schlatter C. Metabolism and tissue distribution of [C-14-labeled
aflatoxin-B1 in pigs. Food Cosmet Toxicol. 1980;18:253-6.
17. Rawal S, Kim JE, Coulombe-JR R. Aflatoxin B1 in poultry: toxicology, metabolism and
prevention. Res Vet Sci. 2010;89:325-31.
18. Leeson S, Diaz GJ, Summers JD. Poultry metabolic disorders and mycotoxins. Guelph:
University Books; 1995.
19. Osweiler GD. Mycotoxins and livestock: what role do fungal toxins play in illness and
production losses? Vet Med. 1990;85:89-94.
20. Thieu NQ, Ogle B, Pettersson H. Efficacy of bentonite clay in ameliorating aflatoxicosis
in piglets fed aflatoxin contaminated diets. Trop Anim Health Prod. 2008;40:649-56.
21. Marin DE, Taranu I, Bunaciu RP, Pascale F, Tudor DS, Avram N, et al. Changes in
performance blood parameters , humoral and cellular immune responses in weanling
piglets exposed to low doses of aflatoxina. J Anim Sci. 2002;80:1250-7.
22. Meissonnier GM, Laffitte J, Loiseau N, Benoit E, Raymond I, Pinton P, et al. Selective
impairment of drug-metabolizing enzymes in pig liver during subchronic dietary
exposure to aflatoxin B1. Food Chem Toxicol. 2007;45:2145-54.
23. Marasas WFO. Discovery and occurrence of the fumonisins: a historical perspective.
Environ Health Perspect. 2001;109:239-43.
24. Haschek WM, Gumprecht LA, Smith G, Tumbleson ME, Constable PD. Fumonisin
toxicosis in swine: an overview of porcine pulmonary edema and current perspectives.
Environ Health Perspect. 2001;109:251-7.
25. Minami L, Meireles PG, Hirooka EY, Ono EYS. Fumonisinas: efeitos toxicológicos,
mecanismo de ação e biomarcadores para avaliação da exposição. Cienc Agrar.
2004;25:207-24.
26. Chen J, Mirocha CJ, Xie W, Hogge L, Olson D. Production of the mycotoxin fumonisin
B1 by Alternaria alternata f. sp. lycopersici. Appl Environ Microbiol. 1992;58:3928-31.
27. Ah-Seo J, Won Lee Y. Natural occurrence of the C series of fumonisins in moldy corn.
Appl Environ Microbiol. 1999;65:1331-4.
28. Henry MH, Wyatt RD. A review of fumonisin production by Fusarium moniliforme and
fumonisin toxicoses in animals. Appl Poult Res. 1993;2:188-92.
29. Soriano JM, González L, Catalá AI. Mechanism of action of sphingolipids and their
metabolites in the toxicity of fumonisin B1. Prog Lipid Res. 2005;244:345-56.
30. Wang E, Norred WP, Bacon CW, Riley RT, Merrill Jr AH. Inhibition of sphingolipids
biosynthesis by fumonisins. Implications for diseases associated with Fusarium
moniliforme. J Biol Chem. 1991;266:14486-90.
31. Stockmann-Juvala H, Savolainen KA. A review of the toxic effects and mechanisms of
action of fumonisin B1. Hum Exp Toxicol. 2008;27:799-809.
32. Lallès JP, Lessard M, Oswald IP, David JC. Consumption of fumonisin B1 for 9 days
induces stress proteins along the gastrointestinal tract of pigs. Toxicon. 2010;55:244-9.
33. Dilkin P, Direito G, Simas MM, MallmanN CA, Corrêa B. Toxicokinetics and
toxicological effects of single oral dose of fumonisin B1 containing Fusarium
verticillioides culture material in weaned piglets. Chem Biol Interact. 2010;3:157-62.
34. Dilkin P, Zorzete P, Mallmann CA, Gomes JD, Utiyama CE, Oetting LL, et al.
Toxicological effects of chronic low doses of aflatoxin B1 and fumonisin B1-containing
Fusarium moniliforme culture material in weaned piglets. Food Chem Toxicol.
2003;41:1345-53.
35. Oswald IP, Desautels C, Laffitte J, Fournout S, Peres SY, Odin M, et al. Mycotoxin
fumonisin B1 increases intestinal colonization by pathogenic Escherichia coli in pigs.
Appl Environ Microbiol. 2003;69:5870-4.
36. Bouhet S, Le Dorze E, Peres S, Fairbrother JM, Oswald I P. Mycotoxin fumonisin B1
selectively down-regulates the basal IL-8 expression in pig intestine: in vivo and in vitro
studies. Food Chem Toxicol. 2006;44:1768-73.
37. Santos MC, Sousa RB, Oliveira SEM, Lima KSC, Lima ALS. Micotoxinas e seu
potencial como agentes de guerra. Rev Virtual Quim. 2014;6:761-78.
38. Minervini F, Dell'Aquila ME. Zearalenone and reproductive function in farm animals. Int
J Mol Sci. 2008;9:2570-84.
39. Zinedine A, Soriano JM, Moltó JC, Mañes J. Review on the toxicity, occurrence,
metabolism, detoxification, regulations and intake of zearalenone: An oestrogenic
mycotoxin. Food Chem Toxicol. 2007;45:1-18.
40. Richardson KE, Hagler WM, Mirocha CJ. Production of zearalenone, α-zearalenol and β-
zearalenol by Fusarium spp. in rice culture. J Agric Food Chem. 1985;33:862-6.
41. Fitzpatrick D, Picken CA, Murphy LC, Buhr MM. Measurement of the relative bindingaffinity of zearalenone, alpha-zearalenol and beta-zearalenol for uterine and oviduct
estrogen-receptors in swine, rats and chickens: an indicator of estrogenic potencies.
Comp Biochem Physiol. 1989;94:691-4.
42. Ryu D, Hanna MA, Bullerman LB. Stability of zearalenone during extrusion of corn
grits. J Food Prot. 1999;62:1482-4.
43. Mizutani K, Nagatomi Y, Mochizuki N. Metabolism of zearalenone in the course of beer
fermentation. Toxins. 2011;3:134-41.
44. Zhu L, Yuan H, Guo C, Lu Y, Deng S, Yang Y, et al. Zearalenone induces apoptosis and
necrosis in porcine granulosa cells via a caspase-3- and caspase-9 dependent
mitochondrial signaling pathway. J Cell Physiol. 2012;227:1814-20.
45. Andretta I, Lovatto PA, Hauschild L, Dilkin P, Garcia GG, Lanferdini E, et al. Feeding
of pre-pubertal gilts with diets containing zearalenone. Arq Bras Med Vet Zootec.
2008;60:1227-33.
46. Malekinejad H, Schoevers EJ, Daemen IJJM, Zijlstra C, Colenbrander B, FinkGremmels J, et al. Exposure of oocytes to the Fusarium toxins zearalenone and
deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. Biol
Reprod. 2007;77:840-7.
47. Diaz-llano G, Smith TK. Effects of feeding grains naturally contaminated with Fusarium
mycotoxins with and without a polymeric glucomannan mycotoxin adsorbent on
reproductive performance and serum chemistry of pregnant gilts. J Anim Sci.
2006;84:2361-6.
48. Alm H, Brüssow KP, Torner H, Vanselow J, Tomek W, Dänicke S, et al. Influence of
Fusarium-toxin contaminated feed on initial quality and meiotic competence of gilt
oocytes. Reprod Toxicol. 2006;22:44-50.
49. Rostagno HS, Albino LFT, Donzele JL, Gomes PC, Oliveira RF, Lopes DC, et al.
Tabelas brasileiras para aves e suínos: composição de alimentos e exigências nutricionais.
3a ed. Viçosa: UFV; 2011.
50. Almeida AVAF, Botura MB, Abreu RD, Bittencourt TCC, Batatinha MJM. Ocorrência
de aflatoxinas em milho destinado à alimentação de aves no estado da Bahia. Arq Inst
Biol. 2009;76:353-8.
51. Rocha LO, Nakai VK, Braghini R, Reis TA, Kobashigawa E, Corrêa B. Mycoflora and
co-occurrence of fumonisins and aflatoxins in freshly harvested corn in different regions
of Brazil. Int J Mol Sci. 2009;10:5090-103.
52. Bento LF, Caneppele MAB, Albuquerque MCF, Kobayasti L, Caneppele C, Andrade PJ,
et al. Ocorrência de fungos e aflatoxinas em grãos de milho. Rev Inst Adolfo Lutz.
2012;71:44-9.
53. Moreno EC, Garcia GT, Ono MA, Vizoni E, Kawamura O, Hirooka EY, et al. Cooccurrence of mycotoxins in corn samples from the northern region of Paraná State,
Brazil. Food Chem. 2009;116:220-6.
54. Ramos ATM. Levantamento da microflora de grãos ardidos de milho e avaliação da
resistência genética à Fusarium verticillioides [dissertação]. Piracicaba: Escola Superior
de Agricultura Luiz de Queiroz; 2008.
55. Vargas EA, Preis RA, Castro L, Silva CMG. Co-occurrence of aflatoxins B1, B2, G1,
G2, zearalenone and fumonisin B1 in Brazilian corn. Food Addit Contam. 2001;18:981-
6.
56. Queiroz VAV, Alves GLO, Conceição RRP, Guimarães LJM, Mendes SM, Ribeiro PEA,
et al. Occurrence of fumonisins and zearalenone in maize stored in family farm in Minas
Gerais, Brazil. Food Control. 2012;28:83-6.
57. Orsi RB, Corrêa B, Pozzi CR, Schammas EA, Nogueira JR, Dias SMC, et al. Mycoflora
and occurrence of fumonisins in freshly harvested and stored hybrid maize. J Stored Prod
Res. 2000;36:75-87.
58. Camargos SM, Soares LMV, Sawazaki E, Bolonhezi D, Castro JL, Bortolleto N.
Fumonisins in corn cultivars in the State of São Paulo. Braz J Microbiol. 2000;31:225-9.
59. Souza MLM, Sulyok M, Freitas-Silva O, Costa SS, Brabet C, Machinski Junior M, et al.
Cooccurrence of mycotoxins in maize and poultry feeds from Brazil by liquid
chromatography/tandem mass spectrometry. Sci World J. 2013:1-9.
60. Van Der Westhuizen L, Shephard GS, Scussel VM, Costa LLF, Vismer HF, Rheeder JP,
et al. Fumonisin contamination and Fusarium incidence in corn from Santa Catarina,
Brazil. J Agric Food Chem. 2003;51:5574-8.
Publicado
29-09-2017
Como Citar
Maggio de Castro Souto, P. C., Augusto, L., Carraro Di Gregorio, M., & Fernandes de Oliveira, C. A. (2017). Principais micotoxicoses em suínos. Veterinária E Zootecnia, 24(3), 480-494. https://doi.org/10.35172/rvz.2017.v24.286
Seção
Artigos de Revisão