Processo carcinogênico das próstatas caninas

Via wnt canônica e seu estudo comparado

Autores

  • Priscila Emiko Kobayashi
  • Carlos Eduardo Fonseca-Alves
  • Luis Gabriel Rivera-Calderón
  • Renée Laufer-Amorim

DOI:

https://doi.org/10.35172/rvz.2017.v24.337

Palavras-chave:

carcinoma prostático canino, oncologia comparada, cães, via WNT

Resumo

A espécie canina apresenta semelhanças com a espécie humana com relação às lesões
prostáticas, sendo a única espécie a apresentar tumores espontâneos e com frequência, desse
modo representa um importante modelo para estudo comparativo de afecções desta glândula.
O desenvolvimento das neoplasias prostáticas é multifatorial e dentre eles, alterações
genéticas e epigenéticas estão envolvidas, portanto o cão pode ser um modelo natural e
espontâneo para o estudo das lesões pré neoplásicas e neoplásicas da próstata, com futuro alto
potencial de ser utilizado como modelo em testes pré-clínicos de medicamentos. Uma das vias
importantes para o desenvolvimento dos carcinomas prostáticos é a WNT canônica,
dependente da proteína β-catenina. Nesta revisão, abordaremos o papel desta via e sua
participação na carcinogênese prostática, importante em humanos e cães, além de algumas
proteínas envolvidas na regulação da mesma

Referências

1. Johnston S, Kamolpatana K, Root-Kustritz M, Johnston G. Prostatic disorders in the
dog. Anim Reprod Sci. 2000;60-61:405–15.
2. Toledo DC, Faleiro MBR, Rodrigues MMP, Di Santis GW, Amorim RL, Moura
VMBD. Caracterização histomorfológica da atrofia inflamatória proliferativa na
próstata canina. Cienc Rural. 2010;40(6):1372–7.
3. Teske E, Naan E, Van Dijk E, Van Garderen E, Schalken J. Canine prostate carcinoma:
epidemiological evidence of an increased risk in castrated dogs. Mol Cell Endocrinol.
2002;197(1-2):251–5.
4. Instituto Nacional de Câncer José de Alencar Gomes da Silva. Estimativa 2016:
incidência de câncer no Brasil [Internet]. Rio de Janeiro: INCA; 2016 [cited 2017 Jan
19]. Available from: http://www.inca.gov.br/estimativa/2016/.
5. LeRoy BE, Northrup N. Prostate cancer in dogs: comparative and clinical aspects. Vet
J. 2009;180(2):149–62.
6. Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer.
Trends Mol Med . 2011;17(7):380–8.
7. Zanini DA, Kimura KC, Nishiya AT, Ubukata R, Leandro RM, Brito CP, et al.
Environmental risk factors related to the development of canine non-Hodgkin’s
lymphoma. Cienc Rural. 2013;43(7):1302–8.
8. Keller JM, Schade GR, Ives K, Cheng X, Rosol TJ, Piert M, et al. A novel canine
model for prostate cancer. Prostate. 2013;73(9):952–9.
9. Winkler S, Escobar HM, Meyer B, Simon D, Eberle N, Baumgartner W, et al. HMGA2
expression in a canine model of prostate cancer. Cancer Genet Cytogenet.
2007;177(2):98–102.
10. Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, et al. Caveolin-1
upregulation contributes to c-Myc-Induced High-Grade prostatic intraepithelial
neoplasia and prostate cancer. Mol Cancer Res. 2012;10(2):218–29.
11. Verras M, Sun Z. Roles and regulation of Wnt signaling and beta-catenin in prostate
cancer. Cancer Lett. 2006;237(1):22–32.
12. Yu X, Wang Y, Jiang M, Bierie B, Roy-Burman P, Shen MM, et al. Activation of β-
Catenin in mouse prostate causes HGPIN and continuous prostate growth after
castration. Prostate. 2009;69(3):249–62.
13. Jamieson C, Sharma M, Henderson BR. Wnt signaling from membrane to nucleus: β-
catenin caught in a loop. Int J Biochem Cell Biol. 2012;44(6):847–50.
14. Li VSW, Ng SS, Boersema PJ, Low TY, Karthaus WR, Gerlach JP, et al. Wnt
Signaling through inhibition of β-Catenin degradation in an intact axin1 complex. Cell.
2012;149(6):1245–56.
15. Stamos JL, Weis WI. The β -Catenin destruction complex. Cold Spring Harb Perspect
Biol. 2013;5(1):a007898.
16. Richiardi L, Fiano V, Vizzini L, De Marco L, Delsedime L, Akre O, et al. Promoter
methylation in APC, RUNX3, and GSTP1 and mortality in prostate cancer patients. J
Clin Oncol. 2009;27(19):3161–8.
17. Wang L, Liu X, Gusev E, Wang C, Fagotto F. Regulation of the phosphorylation and
nuclear import and export of β-catenin by APC and its cancer-related truncated form. J
Cell Sci. 2014;127(Pt 8):1647–59.
18. Kypta RM, Waxman J. Wnt/β-catenin signalling in prostate cancer. Nat Rev Urol.
2012;9(8):418–28.
19. Fonseca-Alves CE, Kobayashi PE, Rivera-Calderón LG, Laufer-Amorim R. Evidence
of epithelial–mesenchymal transition in canine prostate cancer metastasis. Res Vet Sci.
2015;100:176–81.
20. Schmalhofer O, Brabletz S, Brabletz T. E-cadherin, β-catenin, and ZEB1 in malignant
progression of cancer. Cancer Metastasis Rev. 2009;28(1-2):151–66.
21. Fonseca-Alves CE, Rodrigues MMP, de Moura VMBD, Rogatto SR, Laufer-Amorim
R. Alterations of C-MYC, NKX3.1, and E-cadherin expression in canine prostate
carcinogenesis. Microsc Res Tech. 2013;76(12):1250–6.
22. Rodrigues MMP, Rema A, Gartner MF, Laufer-Amorim R. Role of adhesion
molecules and proliferation hyperplasic, pre neoplastic and neoplastic lesions in canine
prostate. Pak J Biol Sci. 2013;16(21):1324–9.
23. Smith J. Canine prostatic disease: a review of anatomy, pathology, diagnosis, and
treatment. Theriogenology. 2008;70:375–83.
24. L’Eplattenier HF. Studies on the pathogenesis and management of prostate carcinoma
in dogs [thesis]. Utrecht: University Utrecht; 2009.
25. Dorso L, Chanut F, Howroyd P, Burnett R. Variability in weight and histological
appearance of the prostate of beagle dogs used in toxicology studies. Toxicol Pathol.
2008;36:917–25.
26. Fonseca-Alves CE, Faleiro MBR, Amorim RL, De Moura VMBD. Avaliação
histológica da próstata de cães adultos sexualmente intactos. Arq Bras Med Vet Zootec.
2010;62(3):596–602.
27. De Marzo AM, Platz EA, Sutcliffe S, Xu J, Grönberg H, Drake CG, et al. Inflammation
in prostate carcinogenesis. Nat Rev Cancer. 2007;7(4):256–69.
28. De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W, Schröder F, et al. The
controversial relationship between benign prostatic hyperplasia and prostate cancer: the
role of inflammation. Eur Urol. 2011;60(1):106–17.
29. Omabe M, Ezeani M. Infection, inflammation and prostate carcinogenesis. Infect Genet
Evol. 2011;11(6):1195–8.
30. Rossignol A, Villers A, Molinié V, Mazerolles C. Histologie et immunohistochimie de
la prostate du chien. Validité du modèle animal pour l’étude des lésions
précancéreuses. Rev Med Vet. 2004;1(155):21–6.
31. Galvão ALB, Ferreira GS, Léga E, Costa PF, Ondani AC, Denicol A. Principais
afecções da glândula prostática em cães. Revista Brasileira de Reprodução Animal.
2011;35(4):456–66.
32. LeRoy BE, Nadella MVP, Toribio RE, Leav I, Rosol TJ. Canine prostate carcinomas
express markers of urothelial and prostatic differentiation. Vet Pathol. 2004;41(2):131–
40.
33. Matsuzaki P, Cogliati B, Sanches DS, Chaible LM, Kimura KC, Silva TC, et al.
Immunohistochemical Characterization of Canine Prostatic Intraepithelial Neoplasia. J
Comp Pathol. 2010;142(1):84–8.
34. Baetke SC, Adriaens ME, Seigneuric R, Evelo CT, Eijssen LMT. Molecular pathways
involved in prostate carcinogenesis: insights from public microarray datasets. PLoS
One . 2012;7(11):e49831.
35. Palapattu GS. Prostate carcinogenesis and inflammation: emerging insights.
Carcinogenesis. 2004;26(7):1170–81.
36. Grover PL, Martin FL. The initiation of breast and prostate cancer. Carcinogenesis.
2002;23(7):1095–102.
37. Shen MM, Abate-Shen C. Molecular genetics of prostate cancer: new prospects for old
challenges. Genes Dev. 2010;24(18):1967–2000.
38. Alshenawy HA, Ali MAE-HAE-A. Differential caveolin-1 expression in colon
carcinoma and its relation to E-cadherin–β-catenin complex. Ann Diagn Pathol.
2013;17(6):476–82.
39. Chen G, Shukeir N, Potti A, Sircar K, Aprikian A, Goltzman D, et al. Up-regulation of
Wnt-1 and beta-catenin production in patients with advanced metastatic prostate
carcinoma: potential pathogenetic and prognostic implications. Cancer.
2004;101(6):1345–56.
40. López-Knowles E, Zardawi SJ, McNeil CM, Millar EK , Crea P, Musgrove E, et al.
Cytoplasmic localization of beta-catenin is a marker of poor outcome in breast cancer
patients. Cancer Epidemiol Biomarkers Prev. 2010;19(1):301–9.
41. Morgan C, Jenkins SA, Kynaston HG, Doak SH. The role of adhesion molecules as
biomarkers for the aggressive prostate cancer phenotype. PLoS One. 2013;8(12):1–8.
42. Drivalos A, Papatsoris AG, Chrisofos M, Efstathiou E, Dimopoulos MA. The role of
the cell adhesion molecules (integrins/cadherins) in prostate cancer. Int Braz J
Urol. 2011;37(3):302–6.
43. Rodrigues MMP, Rema A, Gartner MF, Laufer-Amo R. Role of adhesion molecules
and proliferation hyperplasic, pre neoplastic and neoplastic lesions in canine prostate.
Pak J Biol Sci. 2013;16(21):1324–9.
44. Kim H, He Y, Yang I, Zeng Y, Kim Y, Seo YW, et al. δ-Catenin promotes E-cadherin
processing and activates β-catenin-mediated signaling: implications on human prostate
cancer progression. Biochim Biophys Acta. 2012;1822(4):509–21.
45. Jaggi M, Johansson SL, Baker JJ, Smith LM, Galich A, Balaji KC. Aberrant expression
of E-cadherin and beta-catenin in human prostate cancer. Urol Oncol. 2005;23(6):402–
6.
46. Faleiro-Rodrigues C, Macedo-Pinto I, Pereira D, Lopes CS. Prognostic value of Ecadherin immunoexpression in patients with primary ovarian carcinomas. Ann Oncol.
2004;15(10):1535–42.
47. Rubin MA, Mucci NR, Figurski J, Fecko A, Pienta KJ, Day ML. E-cadherin expression
in prostate cancer: a broad survey using high-density tissue microarray technology.
Hum Pathol. 2001;32(7):690–7.
48. Cervantes-Arias A, Pang LY, Argyle DJ. Epithelial-mesenchymal transition as a
fundamental mechanism underlying the cancer phenotype. Vet Comp Oncol.
2013;11(3):169–84.
49. Polakis P. The adenomatous polyposis coli (APC) tumor suppressor. Biochim Biophys
Acta. 1997;1332(3):F127–47.
50. Bruxvoort KJ, Charbonneau HM, Giambernardi TA, Goolsby JC, Qian CN, Zylstra
CR, et al. Inactivation of Apc in the mouse prostate causes prostate carcinoma. Cancer
Res. 2007;67:2490–6.
51. Watanabe M, Kakiuchi H, Kato H, Shiraishi T, Yatani R, Sugimura T, et al. APC gene
mutations in human prostate cancer. Jpn J Clin Oncol. 1996;26(2):77–81
52. Richiardi L, Fiano V, Grasso C, Zugna D, Delsedime L, Gillio-Tos A, et al.
Methylation of APC and GSTP1 in non-neoplastic tissue adjacent to prostate tumour
and mortality from prostate cancer. PloS One. 2013;8(7):e68162.
53. MacDonald BT, Tamai K, He X. Wnt/β-Catenin signaling: components, mechanisms,
and diseases. Dev Cell. 2009;17(1):9–26.
54. Valkenburg KC, Yu X, De Marzo AM, Spiering TJ, Matusik RJ, Williams BO.
Activation of Wnt/β-catenin signaling in a subpopulation of murine prostate luminal
epithelial cells induces high grade prostate intraepithelial neoplasia. Prostate.
2014;74(15):1506–20.
55. Kawano Y. Secreted antagonists of the Wnt signalling pathway. J Cell Sci.
2003;116(Pt 13):2627–34.
56. Anastas JN, Moon RT. WNT signalling pathways as therapeutic targets in cancer. Nat
Rev Cancer. 2012;13(1):11–26.
57. Clevers H, Nusse R. Wnt/β-catenin signaling and disease. Cell. 2012;149(6):1192–205.
58. Lean FZX, Kontos S, Palmieri C. Science direct expression of b -catenin and
mesenchymal markers in canine prostatic hyperplasia and carcinoma. Journal of Comp
Pathol. 2014;150(4):373–81.
59. Simons BW, Hurley PJ, Huang Z, Ross AE, Miller R, Marchionni L, et al. Wnt
signaling though beta-catenin is required for prostate lineage specification. Dev Biol.
2012;371(2):246–55.

Downloads

Publicado

2017-03-31

Como Citar

1.
Emiko Kobayashi P, Fonseca-Alves CE, Rivera-Calderón LG, Laufer-Amorim R. Processo carcinogênico das próstatas caninas: Via wnt canônica e seu estudo comparado. RVZ [Internet]. 31º de março de 2017 [citado 26º de dezembro de 2024];24(1):49-5. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/337

Edição

Seção

Artigos de Revisão