VIABILIDADE OVARIANA COM O USO DO EXTRATO DE SEMENTE DE UVA: UMA REVISÃO SISTEMÁTICA

uma revisão sistemática

Autores

  • ANDRE PETROLINI universidade federal do vale do são francisco

DOI:

https://doi.org/10.35172/rvz.2021.v28.476

Palavras-chave:

antioxidante, fertilidade, resíduos, uva, ovário

Resumo

Objetivo: Examinar sistematicamente a literatura para verificar a influência do extrato de semente de uva como fator antioxidante no tratamento da saúde ovariana. Método: Busca e seleção da literatura em artigos publicados em língua inglesa nas bases de dados Lilacs, PubMed, SciELO, Science Direct/Elvesier e Google Acadêmico. Descritores utilizados foram grape (uva) “AND” seed (semente) “AND” ovary (ovário) “OR” ovarian (ovariano), sendo localizados 9.100 artigos. Realizadas leituras de títulos, resumos e textos completos, 03 manuscritos preencheram os critérios de inclusão. Resultados: O uso do extrato de procianidina de semente de uva e do extrato proantocianidina de semente de uva obtiveram redução de ROS, quanto ao uso do extrato de semente de uva foi observado redução de LDL. Conclusão: O extrato de semente de uva pode ser benéfico para a viabilidade da saúde ovariana, pois causa homeostase a respeito do estresse oxidativo, no entanto, faz-se necessário estudos mais aprofundados.

Referências

Referências
1. Kobori CN, Jorge N. Characterization of some seed oils of fruits for utilization of industrial residues. Cienc e Agrotecnologia. 2005;29(5):1008–14.
2. Kim Y, Choi Y, Ham H, Jeong HS, Lee J. Protective effects of oligomeric and polymeric procyanidin fractions from defatted grape seeds on tert-butyl hydroperoxide-induced oxidative damage in HepG2 cells. Food Chem [Internet]. 2013;137(1–4):136–41. Available from: http://dx.doi.org/10.1016/j.foodchem.2012.10.006
3. Peralbo-Molina Á, Luque deCastro MD. Potential of residues from the Mediterranean agriculture and agrifood industry. Vol. 32, Trends in Food Science and Technology. 2013. p. 16–24.
4. Puiggròs F, Llópiz N, Ardévol A, Bladé C, Arola L, Salvadó MJ. Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J Agric Food Chem. 2005;53(15):6080–6.
5. Guo L, Li HW, Sun B, Jing YY, Yu QZ, Ying XD, et al. Direct in vivo evidence of protective effects of grape seed procyanidin fractions and other antioxidants against ethanol-induced oxidative DNA damage in mouse brain cells. J Agric Food Chem. 2007;55(14):5881–91.
6. Vinson JA, Mandarano MA, Shuta DL, Bagchi M, Bagchi D. Beneficial effects of a novel IH636 grape seed proanthocyanidin extract and a niacin-bound chromium in a hamster atherosclerosis model. Mol Cell Biochem. 2002;240(1–2):99–103.
7. Mantena SK, Baliga MS, Katiyar SK. Grape seed proanthocyanidins induce apoptosis and inhibit metastasis of highly metastatic breast carcinoma cells. Carcinogenesis. 2006;27(8):1682–91.
8. Wang YJ, Thomas P, Zhong JH, Bi FF, Kosaraju S, Pollard A, et al. Consumption of grape seed extract prevents amyloid-β deposition and attenuates inflammation in brain of an alzheimer’s disease mouse. Neurotox Res. 2009;15(1):3–14.
9. Ghafoor K, Choi YH, Jeon JY, Jo IH. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem. 2009;57(11):4988–94.
10. de Campos LMAS, Leimann F V., Pedrosa RC, Ferreira SRS. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour Technol. 2008;99(17):8413–20.
11. García-Lomillo J, González-SanJosé ML, Del Pino-García R, Rivero-Pérez MD, Muñiz-Rodríguez P. Antioxidant and antimicrobial properties of wine byproducts and their potential uses in the food industry. J Agric Food Chem. 2014;62(52):12595–602.
12. Chidambara Murthy KN, Singh RP, Jayaprakasha GK. Antioxidant activities of grape (Vitis vinifera) pomace extracts. J Agric Food Chem. 2002;50(21):5909–14.
13. Lachman S, Peters RJG, Lentjes MAH, Mulligan AA, Luben RN, Wareham NJ, et al. Ideal cardiovascular health and risk of cardiovascular events in the EPIC-Norfolk prospective population study. Eur J Prev Cardiol. 2015;23(9):986–94.
14. Vuong T V., Franco C, Zhang W. Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture. Biotechnol Reports [Internet]. 2014;1–2:15–21. Available from: http://dx.doi.org/10.1016/j.btre.2014.04.002
15. Bezerra MÉS, Gouveia BB, Barberino RS, Menezes VG, Macedo TJS, Cavalcante AYP, et al. Resveratrol promotes in vitro activation of ovine primordial follicles by reducing DNA damage and enhancing granulosa cell proliferation via phosphatidylinositol 3-kinase pathway. Reprod Domest Anim. 2018;53(6):1298–305.
16. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME. Oxidative stress and cancer: An overview. Ageing Res Rev [Internet]. 2013;12(1):376–90. Available from: http://dx.doi.org/10.1016/j.arr.2012.10.004
17. Rodgers RJ. Steroidogenic cytochrome p450 enzymes and ovarian steroidogenesis. Reprod Fertil Dev. 1990;2(2):153–63.
18. Hirota, Imai; Yasuhito N. Serial Review : Regulatory and Cytoprotective Aspects of Lipid Hydroperoxide Metabolism. Free Radic Biol Med. 2003;34(2):145–69.
19. Zhang JQ, Xing BS, Zhu CC, Shen M, Yu FX, Liu HL. Protective effect of proanthocyanidin against oxidative ovarian damage induced by 3-nitropropionic acid in mice. Genet Mol Res. 2015;14(1):2484–94.
20. Bao L, Cai X, Zhang Z, Li Y. Grape seed procyanidin B2 ameliorates mitochondrial dysfunction and inhibits apoptosis via the AMP-Activated protein kinase-silent mating type information regulation 2 homologue 1-PPARγ co-Activator-1α axis in rat mesangial cells under high-dose glucosami. Br J Nutr. 2015;113(1):35–44.
21. Long M, Liu Y, Cao Y, Wang N, Dang M, He J. Proanthocyanidins attenuation of chronic lead-induced liver oxidative damage in kunming mice via the Nrf2/ARE pathway. Nutrients. 2016;8(10).
22. Zhang JQ, Gao BW, Wang J, Ren QL, Chen JF, Ma Q, et al. Critical role of foxo1 in granulosa cell apoptosis caused by oxidative stress and protective effects of grape seed procyanidin B2. Oxid Med Cell Longev. 2016;2016.
23. Yang H, Xiao L, Yuan Y, Luo X, Jiang M, Ni J, et al. Procyanidin B2 inhibits NLRP3 inflammasome activation in human vascular endothelial cells. Biochem Pharmacol [Internet]. 2014;92(4):599–606. Available from: http://dx.doi.org/10.1016/j.bcp.2014.10.001
24. Zhang JQ, Wang XW, Chen JF, Ren QL, Wang J, Gao BW, et al. Grape Seed Procyanidin B2 Protects Porcine Ovarian Granulosa Cells against Oxidative Stress-Induced Apoptosis by Upregulating let-7a Expression. Oxid Med Cell Longev. 2019;2019.
25. Wang X, Zhu X, Liang X, Xu H, Liao Y, Lu K, et al. Effects of resveratrol on in vitro maturation of porcine oocytes and subsequent early embryonic development following somatic cell nuclear transfer. Reprod Domest Anim. 2019;(June):1195–205.
26. Liu X, Lin X, Mi Y, Li J, Zhang C. Grape Seed Proanthocyanidin Extract Prevents Ovarian Aging by Inhibiting Oxidative Stress in the Hens. Oxid Med Cell Longev. 2018;2018.
27. Salmabadi Z, Kouchesfahani HM, Parivar K, Karimzadeh L. Effect of grape seed extract on lipid profile and expression of lnterleukin-6 in polycystic ovarian syndrome wistar rat model. Int J Fertil Steril. 2017;11(3):176–83.
28. Mohseni, Kouchesfahani H; Parivar, K; Salmabadi Z. Effect of hydroalcoholic grape seed extract (Vitis vinifera L.) on polycystic ovary syndrome in female Wistar rats. J Cell Tissue. 2015;6(2):153–65.
29. Sato M, Bagchi D, Tosaki A, Das DK. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Radic Biol Med. 2001;31(6):729–37.

Arquivos adicionais

Publicado

2021-04-28

Como Citar

1.
PETROLINI A. VIABILIDADE OVARIANA COM O USO DO EXTRATO DE SEMENTE DE UVA: UMA REVISÃO SISTEMÁTICA: uma revisão sistemática. RVZ [Internet]. 28º de abril de 2021 [citado 21º de janeiro de 2025];28:1-9. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/476

Edição

Seção

Artigos de Revisão