O COBRE COMO SUPERFÍCIE DE CONTATO ANTIMICROBIANA E SUA POTENCIAL APLICAÇÃO NA MEDICINA VETERINÁRIA

Autores

  • Ronise Faria Rohde Depner
  • Rômulo Alexandre Depner
  • Vivian Lucca
  • Maristela Lovato

Palavras-chave:

cobre antimicrobiano, superfícies de toque, infecção hospitalar, segurança dos alimentos

Resumo

O cobre metálico tem atraído atenção desde 2008, quando quase 300 ligas foram registrada pela agência norte-americana Environmental Protection Agency (EPA) como superfícies de contato antimicrobianas. Escherichia coli O157:H7; Staphylococcus aureus meticilina-resistente (MRSA); Clostridium difficile; Salmonella enterica; Campylobacter jejuni; Listeria monocytogenes; Candida albicans e Influenza A (H1N1) estão entre os microrganismos comprovadamente inativados pelo cobre. Ensaios hospitalares demonstraram uma redução de 58% das infecções nosocomiais em pacientes de Unidades de Terapia Intensiva (UTI) em quartos equipados com superfícies de cobre. O objetivo do trabalho foi avaliar a possibilidade da introdução dessas superfícies nas diversas áreas da veterinária através de uma revisão bibliográfica dos principais estudos realizados a respeito do cobre e de suas ligas. Com base nas propriedades bactericidas, fungicidas e virucidas encontradas, pode-se inferir a quantidade de benefícios que o cobre pode trazer à medicina veterinária, tanto na produção animal, quanto em segurança dos alimentos e saúde pública. A aplicação das superfícies antimicrobianas poderá resultar em menores taxas de infecções e menor uso de antibióticos, redução de custos com tratamento, melhor desempenho zootécnico e redução da transmissão de zoonoses.

Referências

Elguindi J, Hao X, Lin Y, Alwathnani HA, Wei G, Rensing C. Advantages and challenges of increased antimicrobial copper use and copper mining. Appl Microbiol Biotechnol. 2011; 91:237-249.

Gonçalves ECBA, Teodoro AJ, Takase I. Teores de cobre em extratos de carne in natura e processada. Ciênc Tecnol Aliment. 2007; 27(2):298-302.

O´Gorman J, Humphreys H. Application of copper to prevent and control infection. Where are we now? J Hosp Infect. 2012; 81(4):217-23.

Michels HT, Wilks SA, Noyce JO, Keevil CW. Copper Alloys for Human Infectious Disease Control. Materials Science and Technology Conference; 2005 September 25 – 28; Pittsburgh, PA.

Gould SWJ, Fielder MD, Kelly AF, Morgan M, Kenny J, Naughton DP. The antimicrobial properties of copper surfaces against a range of important nosocomial pathogens. Annals of Microbiology. 2009 Jan 12; 59(1):151-56.

Grass G, Rensing C, Solioz M. Mettalic Copper as an Antimicrobial Surface. Appl Environ Microbiol. 2011 Mar; 77(5):1541-47.

Mikolay A, Huggett S, Tikana L, Grass G, Braun J, Nies DH. Survival of bacteria on metallic copper surfaces in a hospital Trial. Appl Microbiol Biotechnol. 2010; 87:1875-79.

Faúdez G, Troncoso M, Navarrete P, Figueroa G. Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni. BMC Microbiol. 2004; 4:19.

Michels HT, Noyce JO, Keevil CW. Effects of temperature and humidity on the efficacy of methicillin-resistant Staphylococcus aureus challenged antimicrobial materials containing silver and copper. Lett Appl Microbiol. 2009; 49(2):191-95.

Environmental Protection Agency (EPA) [Internet]. EPA registers copper-containing alloy products; 2008 Feb 29 [updated 2012 May 9; cited 2014 Apr 20]. Available from: http://www.epa.gov/pesticides/factsheets/copper-alloy-products.htm.

Mehtar S, Wiid I, Todorov SD. The antimicrobial activity of copper and copper alloys against nosocomial pathogens and Mycobacterium tuberculosis isolated from healthcare facilities in the Western Cape: an in-vitro study. J Hosp Infect. 2008; 68(1):45-51.

Salgado CD, Sepkowitz KA, John JF, Cantey JR, Attaway HH, Freeman KD, et al. Copper Surfaces Reduce the Rate of Healthcare-Acquired Infections in the Intensive Care Unit. Infect Control Hosp Epidemiol. 2013; 34(5):479-86.

Airey P, Verran J. Potential use of copper as a hygienic surface: problems associated with cumulative soiling and cleaning. J Hosp Infect. 2007; 67(3):271-7.

Wheeldon LJ, Worthington T, Lambert PA, Hilton AC, Lowden CJ, Elliott TSJ. Antimicrobial efficacy of copper surfaces against spores and vegetative cells of Clostridium difficile: the germination theory. J Antimicrob Chemother. 2008; 62(3):522-5.

Espírito Santo C, Taudte N, Nies DH, Grass G. Contribution of Copper Ion Resistance to Survival of Escherichia Coli on Metallic Copper Surfaces. Appl Environ Microbiol. 2008; 74(4):977-86.

Souli M, Galani I, Plachouras D, Panagea T, Armaganidis A, Petrikkos G, et al. Antimicrobial activity of copper surfaces against carbapenemase-producing contemporary Gram-negative clinical isolates. J Antimicrob Chemother. 2013; 68(4):852-7.

Espírito Santo C, Lam EW, Elowsky CG, Quaranta D, Domaille DW, Chang CJ, et al. Bacterial Killing by Dry Metallic Copper Surfaces. Appl Environ Microbiol. 2011; 77(3):794-802.

Warnes SL, Green SM, Michels HT, Keevil CW. Biocidal Efficacy of Copper Alloys against Pathogenic Enterococci Involves Degration of Genomic and Plasmid DNAs. Appl Environ Microbiol. 2010; 76(16):5390-401.

Espírito Santo C, Quaranta D, Grass G. Antimicrobial metallic copper surfaces kill Staphylococcus haemolyticus via membrane damage. Microbiologyopen. 2012; 1(1):46-52.

Noyce JO, Michels H, Keevil CW. Inactivation of Influenza A Virus on Copper versus Stainless Steel Surfaces. Appl Environ Microbiol. 2007; 73(8):2748-50.

Warnes SL, Keevil CW. Inactivation of Norovirus on Dry Copper Alloy Surfaces. PloS One. 2013; 9, 8(9); 1-9.

Quaranta D, Krans T, Espírito Santo C, Elowsky CG, Domaille DW, Chang CJ, et al. Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces. Appl Environ Microbiol. 2011; 77(2):416-26.

Noyce JO, Michels H, Keevil CW. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. J Hosp Infect. 2006; 63(3):289-97.

Weaver L, Michels HT, Keevil CW. Survival of Clostridium difficile on copper and steel: futuristic options for hospital hygiene. J Hosp Infect. 2008; 68(2):145-151.

Casey AL, Adams D, Karpanen TJ, Lambert PA, Cookson BD, Nightingale P, et al. Role of copper in reducing hospital environment contamination. J Hosp Infect. 2010; 74(1):72-77.

Marais F, Mehtar S, Chalkley L. Antimicrobial efficacy of copper touch surfaces in reducing environmental bioburden in a South African community healthcare facility. J Hosp Infect. 2010; 74(1):80-95.

Page K, Wilson M, Parkin IP. Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. In: J Mater Chem. 2009; 1-23.

Schmidt MG, Attaway HH, Sharpe PA, John JJ, Sepkowitz KA, Morgan A, et al. Sustained Reduction of Microbial Burden on Common Hospital Surfaces through Introduction of Copper. J Clin Microbiol. 2012; 50(7):2217-23.

Taylor M, Chaplin S. P368: The economic assessment of an environmental intervention: discrete deployment of copper for infection control in ICUs. From 2nd International Conference on Prevention and Infection Control; 2013 June 25 – 28; Geneva, Switzerland. Antimicrobial Resistance and Infection Control . 2013 Jun; 2(1).

Bryony S. Veterinary Infection Prevention [Internet]. Antimicrobial Copper; 2012 Sep 3 [cited 2014 Mar 26]. Available from: http://www.antimicrobialcopper.com/uk/news-and-download-centre/news/veterinary-infection-prevention.aspx.

Noyce JO, Michels H, Keevil CW. Use of Copper Cast Alloys To Control Escherichia Coli 0157 Cross-Contamination During Food Processing. Appl Environ Microbiol. 2006; 72 (6):4239-44.

Wilks SA, Michels HT, Keevil CW. Survival of Listeria monocytogenes Scott A on metal sufaces: Implication for cross contamination. Int J Food Microbiol. 2006; 111:93-98.

Andrade ECB, Barros AM, Mello VS, Takase I. Avaliação do teor de cobre e zinco em carnes cruas, processadas termicamente, resfriadas e congeladas no período de um mês. Ciênc Tecnol Aliment. 2004; 24(3):393-96.

Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA. Synthesis and antimicrobial activity of copper nanoparticles. Material Letters. 2012; 71:114-16.

Macari M, Gonzales E. Manejo da incubação. 2a ed. Campinas: FACTA; 2003.

Downloads

Publicado

2022-03-21

Como Citar

1.
Depner RFR, Depner RA, Lucca V, Lovato M. O COBRE COMO SUPERFÍCIE DE CONTATO ANTIMICROBIANA E SUA POTENCIAL APLICAÇÃO NA MEDICINA VETERINÁRIA. RVZ [Internet]. 21º de março de 2022 [citado 22º de janeiro de 2025];22(4):532-43. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/865

Edição

Seção

Artigos de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)