Glaucoma, apoptose e sildenafil: compreensão de uma doença sem solução e uma possível abordagem de tratamento

Compreensão de uma doença sem solução e uma possível abordagem de tratamento

Autores

  • Diogo Sousa Zanoni
  • Germana Alegro Da Silva
  • José Luis Laus
  • Renée Laufer Amorim

Palavras-chave:

Apoptose, glaucoma, células ganglionares da retina

Resumo

Milhões de pacientes com glaucoma irão perder a visão, tornando-se uma necessidade
desenvolver terapias neuroprotetoras que possam ser usadas, em conjunção com
medicamentos hipotensores, para impedir a morte de células ganglionares da retina (CGR).
Recentes avanços na compreensão da fisiopatologia do glaucoma são um fator chave na
patogênese da neuropatia glaucomatosa. Com base nos achados em doenças semelhantes, a
hipótese de que melhorando o fluxo sanguíneo do nervo óptico da retina possa resultar em
uma proteção significativa nas CGR e prevenir a perda da visão no glaucoma. O sildenafil,
uma droga vasodilatadora que inibe PDE5, aumentando assim os níveis de cGMP e
prolongando seus efeitos, sendo que foi demonstrado melhorar a sobrevivência de várias
lesões degenerativas. Esta breve revisão resume alguns dos avanços mais importantes que
tiveram no entendimento sobre esta doença e um possível tratamento.

Referências

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262-7.

Sakata K, Sakata LM, Sakata VM, Santini C, Hopker LM, Bernardes R, et al. Prevalence of glaucoma in a South brazilian population: Projeto Glaucoma. Invest Ophthalmol Vis Sci. 2007;48:4974-9.

Leske MC. Open-angle glaucoma: an epidemiologic overview. Ophthalmic Epidemiol. 2007;14:166-72.

Duggal P, Klein AP, Lee KE, Iyengar SK, Klein R, Bailey-Wilson JE, et al. A genetic contribution to intraocular pressure: the beaver dam eye study. Invest Ophthalmol Vis Sci. 2005;46:555-60.

Schmier JK, Halpern MT, Jones ML. The economic implications of glaucoma: a literature review. Pharmacoeconomics. 2007;25:287-308.

Baltmr A, Duggan J, Nizari S, Salt TE, Cordeiro MF. Neuroprotection in glaucoma - Is there a future role?. Exp Eye Res. 2010;91:554-66.

Hayreh SS, Peer J, Zimmerman MB. Morphologic changes in chronic high-pressure experimental glaucoma in rhesus monkeys. J Glaucoma. 1999;8:56-71.

Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol. 2007;42:278-87.

Lin IC, Wang YH, Wang TJ, Wang IJ, Shen YD, Chin NF, et al. Glaucoma, Alzheimer’s disease, and Parkinson’s disease: an 8-year population-based follow-up study. Plos One.

;9:1-6.

Nickells RW. Ganglion cell death in glaucoma: from mice to men. Vet Ophthalmol. 2007;10:88-94.

Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989;107:186-8.

Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 2007;52:S162-73.

Quigley HA. Glaucoma. Lancet. 2011;377:1367-77.

Doganay S, Evereklioglu C, Turkoz Y, Er H. Decreased nitric oxide production in primary open-angle glaucoma. Eur J Ophthalmol. 2002;12:44-8.

Reichstein D, Ren L, Filippopoulos T, Mittag T, Danias J. Apoptotic retinal ganglion cell death in the DBA/2 mouse model of glaucoma. Expe Eye Res. 2007;84:13-21.

Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152-81.

Johnston KC. Effect of sildenafil (Viagra) on cerebral blood vessels. Neurology. 2005;65:785-94.

Orejana L, Barros-Miñones L, Jordán J, Puerta E, Aguirre N. Sildenafil ameliorates cognitive deficits and tau pathology in a senescence-accelerated mouse model. Neurobiol Aging. 2012;33:625.e11-20.

Serarslan Y, Yönden Z, Ozgiray E, Oktar S, Güven EO, Söğüt S, et al. Protective effects of tadalafil on experimental spinal cord injury in rats. J Clin Neurosci. 2010;17:349-52.

Ozdegirmenci O, Kucukozkan T, Akdag E, Topal T, Haberal A, Kayir H, et al. Effects of sildenafil and tadalafil on ischemia/reperfusion injury in fetal rat brain. J Matern Fetal Neonatal Med. 2011;24:317-23.

Weinreb RN. Glaucoma neuroprotection: What is it? Why is it needed? Can J Ophthalmol. 2007;42:396-8.

Vrabec JP, Levin LA. The neurobiology of cell death in glaucoma. Eye. 2007;21:S11-4.

Ofri R, Dawson WW, Foli K, Gelatt KN. Primary open-angle glaucoma alters retinal

recovery from a thiobarbiturate: spatial frequency dependence. Exp Eye Res. 1993;56:481-8.

Friedman DS, Wilson MR, Liebmann JM, Fechtner RD, Weinreb RN. An evidence-based assessment of risk factors for the progression of ocular hypertension and glaucoma. Am J Ophthalmol. 2004;138:S19-31.

Plummer CE, Regnier A, Gelatt N. The canine glaucomas. Vet Ophthalmol. 2013;2:1053-4.

Scott EM, Boursiquot N, Beltran WA, Dubielzig RR. Early histopathologic changes in the retina and optic nerve in canine primary angle-closure glaucoma. Vet Ophthalmol. 2013;16:76-86.

Crish SD, Calkins DJ. Neurodegeneration in glaucoma: progression and calciumependent intracellular mechanisms. Neuroscience. 2011;176:1-11.

Flammer J, Orgül S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359-93.

Grivicich I, Regner A, Rocha AB. Morte cellular por apoptose. Rev Bras Cancerol. 2007;53:335-54.

Luchs A, Pantaleão C. Apoptose e modelos in vivo para estudo das moléculas relacionadas a este fenômeno. Einstein. 2010;8:495-507.

Clavien PA, Rudiger HA, Selzner M. Mechanism of hepatocyte death after ischemia: apoptosis versus necrosis. Int J Oncol. 2000;17:869-79.

Degterev A, Yuan J. Expansion and evolution of cell death programmes. Nature. 2008;9:378-90.

Kerr JF, Wyllie AH, Currie AR. Apoptosis: a basic biological phenomenon with wideranging implications in tissue kinetics. Br J Cancer. 1972;26:239-57. 34. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35:495-516.

Zeiss CJ. The apoptosis-necrosis continuum: insights from genetically altered mice. Vet Pathol. 2003;40:481-95.

Lewin AS, Drenser KA, Hauswirth WW, Nishikawa S, Yasumura D, Flannery JG, et al. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa. Nat Med. 1998;4:967-71.

Parolin MB, Reason IJ. Apoptosis as a mechanism of tissue injury in hepatobiliary diseases. Arg Gastroenterol. 2001;38:138-44.

Hanninen VA, Pantcheva MB, Freeman EE, Poulin NR, Grosskreutz CL. Activation of caspase 9 in a rat model of experimental glaucoma. Curr Eye Res. 2002;25:389-95.

Levkovitch-Verbin H, Dardik R, Vander S, Melamed S. Mechanism of retinal ganglion cells death in secondary degeneration of the optic nerve. Exp Eye Res. 2010;91:127-34. 40. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, et al.

Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science. 2001;292:727-30.

Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL. A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci. 2003;22:6480-90.

Kalia LV, Kalia SK, Salter MW. NMDA receptors in clinical neurology: excitatory times ahead. Lancet Neurol. 2008;7:742-55.

Ning B, Aida T, Yanagisawa M, Katou S, Sakimura K, Mishina M, et al. NMDA receptor subunits have different roles in NMDA-induced neurotoxicity in the retina. Mol Brain. 2013;6:1-9.

Seki M, Soussou W, Manabe S, Lipton SA, et al. Protection of retinal ganglion cells by caspase substrate-binding peptide IQACRG from N-methyl-D-aspartate receptormediated excitotoxicity. Invest Ophthalmol Vis Sci. 2010;51:1198-207.

Sandalon S, Könnecke B, Levkovitch-Verbin H, Ofri R. Functional and structural evaluation of lamotrigine treatment in rat models of acute and chronic ocular hypertension. Exp Eye Res. 2013;115:47-56.

Toda N, Nakanishi-Toda M. Nitric oxide: ocular blood flow, glaucoma, and diabetic retinopathy. Prog Retin Eye Res. 2007;26:205-38.

Abdollahi M, Bahreini-Moghadam A, Emami B, Fooladian F, Zafari K. Increasing intracellular cAMP and cGMP inhibits cadmium-induced oxidative stress in rat submandibular saliva. Comp Biochem Physiol C Tocicol Pharmacol. 2003;135C:331-6.

Milani E, Nikfar S, Khorasani R, Zamani MJ, Abdollahi M. Reduction of diabetesinduced oxidative stress by phosphodiesterase inhibitors in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2005;140:251-5.

Salloum FN, Abbate A, Das A, Houser JE, Mudrick CA, Qureshi IZ, et al. Sildenafil (Viagra) attenuates ischemic cardiomyopathy and improves left ventricular function in mice. Am J Physiol Heart Circ Physiol. 2008;294:H1398-406.

Ebrahimi F, Shafaroodi H, Asadi S, Nezami BG, Ghasemi M, Rahimpour S, et al. Sildenafil decreased cardiac cell apoptosis in diabetic mice: reduction of oxidative stress as a possible mechanism. Can J Physiol Pharmacol. 2009;87:556-64.

Fisher PW, Salloum F, Das A, Hyder H, Kukreja RC. Phosphodiesterase-5 inhibition with sildenafil attenuates ardiomyocyte apoptosis and left ventricular dysfunction in a chronic model of doxorubicin cardiotoxicity. Circulation. 2005;111:1601-10.

Marmor MF. Sildenafil (Viagra) and ophthalmology. Arch Ophthalmol. 1999;117:518-9.

Koksal M, Ozdemir H, Kargi S, Yesilli C, Tomaç S, Mahmutyazicioglu K, et al. The effects of sildenafil on ocular blood flow. Acta Ophthalmol. 2005;83:355-9.

Lee NPY, Cheng CY. Nitric oxide/nitric oxide synthase, spermatogenesis, and tight junction dynamics. Biol Reprod. 2004;70:267-76.

Downloads

Publicado

2016-12-20

Como Citar

1.
Sousa Zanoni D, Alegro Da Silva G, Laus JL, Laufer Amorim R. Glaucoma, apoptose e sildenafil: compreensão de uma doença sem solução e uma possível abordagem de tratamento: Compreensão de uma doença sem solução e uma possível abordagem de tratamento. RVZ [Internet]. 20º de dezembro de 2016 [citado 22º de janeiro de 2025];23(4):577-8. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/408

Edição

Seção

Artigos de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)