LIPÍDIOS EM DIETAS PARA RUMINANTES E SEUS EFEITOS SOBRE A QUALIDADE DA CARNE

Autores

DOI:

https://doi.org/10.35172/rvz.2022.v29.692

Palavras-chave:

Óleos vegetais, ovinos, perfil de ácidos graxos da carne

Resumo

Para atender a demanda dos consumidores, cada vez mais preocupados com a saúde e bem estar, estratégias como a modificação do perfil de ácidos graxos dos produtos oriundos de ruminantes (carne e leite) têm sido adotadas, para obter uma menor proporção de ácidos graxos saturados (AGS) os quais geralmente estão associados ao risco de desenvolvimento de doenças cardiovasculares. A inclusão de fontes lipídicas, como por exemplo os óleos vegetais, ricos em ácidos graxos insaturados na dieta de ruminantes, têm tido como objetivo melhorar a eficiência de utilização de energia, uma vez que apresenta menor incremento calórico em comparação aos carboidratos, bem como melhorar os aspectos qualitativos da carne, principalmente no que se refere ao perfil de ácidos graxos, e aumento dos compostos funcionais da carne. Entretanto, devido à natureza alimentar dos ruminantes ser associada ao consumo de forragens, pobres nesse nutriente, há uma limitação em sua utilização, uma vez que são tóxicos aos microrganismos ruminais. Assim, pesquisas avaliando a inclusão de fontes lipídicas na dieta de animais ruminantes, têm sido realizadas como alternativa alimentar para melhorar a qualidade da carne, minimizando os efeitos sobre a fermentação ruminal.

Referências

IBGE. Sistema IBGE de Recuperação Automática. Banco de Dados Agregados. Tabela 3939: Efetivo dos rebanhos, por tipo de rebanho. [Internet] 2020. Disponível em: https://sidra.ibge.gov.br/tabela/3939

Martins EC, Magalhães KA, Souza JDF, Guimarães VP, Barbosa CMP, Holanda Filho ZF. Cenários mundial e nacional da caprinocultura e da ovinocultura. 2016;1–4.

FAO, Food and Agriculture Organization of the United Nation, FAOSTAT database (2013).

Alves EM, Pedreira S, Moreira BS, Daiane L. Carcass characteristics of sheep fed diets with slow-release urea replacing conventional urea. Acta Scientiarum. 2014;(2008):303–10. DOI: https://doi.org/10.4025/actascianimsci.v36i3.21379

Parente HN, Machado TMM, Carvalho FC, Garcia R, Rogério MCP, Barros NN, et al. Desempenho produtivo de ovinos em confinamento alimentados com diferentes dietas. Arq Bras Med Vet Zootec. 2009;61(2):460-466. DOI: https://doi.org/10.1590/S0102-09352009000200025

Medeiros GRD, Carvalho FFRD, Batista ÂMV, Dutra Júnior WM, Santos GRDA, Andrade DKBD. Efeito dos níveis de concentrado sobre as características de carcaça de ovinos Morada Nova em confinamento. R Bras Zootec. 2009;38(4): 718-727. DOI: https://doi.org/10.1590/S1516-35982009000400019

Lage JF, Paulino PVR, Pereira LGR, Valadares Filho SDC, Oliveira ASD, Detmann, E, et al. Glicerina bruta na dieta de cordeiros terminados em confinamento. PAB. 2010;.45(9):1012-1020. DOI: https://doi.org/10.1590/S0100-204X2010000900011

Oliveira RL, Leão AG, Abreu LL, Teixeira, S, Silva TM. Alimentos alternativos na dieta de ruminantes. RCPA. 2013;15(2):141-160. DOI: https://doi.org/10.15528/2176-4158/rcpa.v15n2p141-160

Beltrão NDM, Oliveira MIPD. Oleaginosas e seus óleos: vantagens e desvantagens para produção de biodiesel. Embrapa Algodão-Documentos (Infoteca-E), 2008.

Oliveira RL, Leão AG, Ribeiro OL, Borja MS, Pinheiro AA, Oliveira RL, Santana MC. Biodiesel industry by-products used for ruminant feed. RCCP. 2012;25(4):625-638.

Horton GMJ, Wohlt JE, Palatini DD, Baldwin JA. Rumen-protected lipid for lactating ewes and their nursing lambs. 1992;9:27–36. DOI: https://doi.org/10.1016/0921-4488(92)90053-7

Valinote AC, Carlos J, Nogueira M, Leme PR, Silva L, Cunha JA. Fontes de Lipídeos e Monensina na Alimentação de Novilhos Nelore e sua Relação com a População de Protozoários Ciliados do Rúmen. R Bras Zootec.2005;350:1418–23. DOI: https://doi.org/10.1590/S1516-35982005000400040

Van Soest PJ. 1994. Nutritional ecology of the ruminant. 2.ed. Ithaca: Cornell University Press.476p. DOI: https://doi.org/10.7591/9781501732355

Palmquist DL, Mattos WRS. Metabolismo de Lipídeos. In: Berchielli TT, Pires AV, Oliveira SG de. Nutrição de ruminantes. Jaboticabal: Funep, 2011. 616p.

Silva MMCD, Rodrigues MT, Branco RH, Rodrigues CAF, Sarmento JLR, Queiroz ACD, et al. Suplementação de lipídios em dietas para cabras em lactação : consumo e eficiência de utilização de nutrientes. R Bras Zootec. 2007; 36(1):257-267. DOI: https://doi.org/10.1590/S1516-35982007000100030

Nobre IS, Souza BB, Marques BAA, Batista NL. Efeito de diferentes níveis de concentrado e inclusão de gordura protegida na dieta sobre o desempenho produtivo e termorregulação de ovinos. ACSA, 2013; 9(2):14-20.

Baldwin RL, Smith NE, Taylor J, Sharp M. University of California 3 , Davis 95616. 1980;51(6):1416–28. DOI: https://doi.org/10.2527/jas1981.5161416x

Kim EJ, Huws SA, Lee MRF, Scollan ND. Dietary Transformation of Lipid in the Rumen Microbial Ecosystem. Asian-australas J Anim Sci. 2009;22(9):1341–50. DOI: https://doi.org/10.5713/ajas.2009.r.11

Nociti RP, Salcedo YTG, Feliciano MAR, Vicente WRR, Lima VFMH, Oliveira MEF. Efeito da ingestão de lipídeos sobre a reprodução de pequenos ruminantes : revisão de literatura. Investigação.2016;15(4):42-46.

Conceição MM, Candeia RA, Dantas HJ, Soledade LE, Fernandes VJ, Souza AG. Rheological behavior of castor oil biodiesel. Energy Fuels, 2005; 19(5):2185-2188. DOI: https://doi.org/10.1021/ef050016g

Brock J, Nogueira MR, Zakrzevski C, Corazza FDC, Corazza ML, Oliveira JVD. Determinação experimental da viscosidade e condutividade térmica de óleos vegetais. Food Sci Technol. 2008;28(3):564-570. DOI: https://doi.org/10.1590/S0101-20612008000300010

Correia IMS, Araújo GS, Paulo JBA, Sousa EMBD De. Avaliação das potencialidades e características físico- químicas do óleo de Girassol ( Helianthus annuus L .) e Coco ( Cocos nucifera L .) produzidos no Nordeste brasileiro. Scientia Plena. 2014;10:1–7.

Costa RG, Queiroga RDCRE, Pereira RAG. Influência do alimento na produção e qualidade do leite de cabra. R Bras Zootec. 2009;38:307-321. DOI: https://doi.org/10.1590/S1516-35982009001300031

Roy A, Mandal GP, Patra AK. Evaluating the performance, carcass traits and conjugated linoleic acid content in muscle and adipose tissues of Black Bengal goats fed soybean oil and sunflower oil. Anim Feed Sci Technol [Internet]. 2013;185(1–2):43–52. Available from: http://dx.doi.org/10.1016/j.anifeedsci.2013.07.004 DOI: https://doi.org/10.1016/j.anifeedsci.2013.07.004

Carvalho VB, Leite RF, Almeida MTC, Paschoaloto JR, Carvalho EB, Lanna DPD, et al. Carcass characteristics and meat quality of lambs fed high concentrations of crude glycerin in low-starch diets. Meat Sci [Internet]. 2015;110:285–92. Available from: http://dx.doi.org/10.1016/j.meatsci.2015.08.001 DOI: https://doi.org/10.1016/j.meatsci.2015.08.001

Girón JEP, Restrepo MLP, Fornaguera JEC. Supplementation with corn oil and palm kernel oil to grazing cows : ruminal fermentation, milk yield , and fatty acid profile. R Bras Zootec. 2016;45(11):693–703. DOI: https://doi.org/10.1590/s1806-92902016001100008

Miltko R, Majewska MGP, Bełzecki G, Kula K, Kowalik B. Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australasian J Anim Sci. 2019;32(6):767–75. DOI: https://doi.org/10.5713/ajas.18.0482

Parente M de OM, Rocha KS, Bessa RJB, Parente HN, Zanine A de M, Machado NAF, et al. Effects of the dietary inclusion of babassu oil or buriti oil on lamb performance, meat quality and fatty acid composition. Meat Sci [Internet]. 2020;160(March 2019):107971. Available from: https://doi.org/10.1016/j.meatsci.2019.107971 DOI: https://doi.org/10.1016/j.meatsci.2019.107971

Diogénes L, Bezerra L, Pereira Filho J, Silva Junior J, Oliveira J, Moura J, et al. Effects of the Dietary Inclusion of Buriti Oil on Lamb Performance, Carcass Traits, Digestibility, Nitrogen Balance, Ingestive Behavior and Blood Metabolites. Animals. 2020;10(11), 1973. DOI: https://doi.org/10.3390/ani10111973

Paula EFE, Maia FP, Chen RFF. Óleos vegetais em nutrição de ruminantes. Rev Eletrôn Nutritime. 2012;9(6):2075–2103.

Motta VT. Bioquímica Clínica para laboratório: Princípios e Interpretações. 5ªed. Porto Alegre: Editora Médica Missau; São Paulo: Robe editorial, EDUCS – Caxias do Sul, 2009.

Botham KM, Mayes PA. lipídeos de importância fisiológica. in: Murray RK, Bender DA, Botham KM, Kennelly PJ, Rodwell VW, Weil PA. (dir.), harper bioquímica ilustrada. 29 ed. mcgraw-hill interamericana editores, s.a., 2012;140 -151, isbn: 978-0-07-176576-3.

Denke MA, Grundy SM. Comparison of effects of lauric acid and palmitic acid on plasma lipids and lipoproteins. Am J Clin Nutr. 1992;56(5):895-898. DOI: https://doi.org/10.1093/ajcn/56.5.895

Santos RD, Gagliardi ACM, Xavier HT, Magnoni CD, Cassani R, Lottenberg AMP, et al. I Diretriz sobre o consumo de gorduras e saúde cardiovascular. Arq Bras Cardiol. 2013;100(1):1-40. DOI: https://doi.org/10.5935/abc.2013S003

Jacotot B, Sola R, Motta C, Nicolaiew N. Effects of monounsaturated fatty acids on lipoprotein metabolism. In Excerpta Medica International Congress Series. Elsevier. 1995;1066(1):262-262.

De Lorgeril M, Renaud S, Salen P, Monjaud I, Mamelle N, Martin JL, et al. Mediterranean alpha-linolenic acid-rich diet in secondary prevention of coronary heart disease. The Lancet, 1994;343 (8911), 1454-1459. DOI: https://doi.org/10.1016/S0140-6736(94)92580-1

Demeyer D, Doreau M. Targets and procedures for altering ruminant meat and milk lipids. Proc Nutr Soc. 1999;58(3):593-607. DOI: https://doi.org/10.1017/S0029665199000786

Silva Sobrinho AG. Produção de carne ovina com qualidade [CD-ROM]. In Anais do Congresso Brasileiro de Zootecnia, 2014. Vitória: Universidade Federal do Espírito Santo.

Ivanović S, Pavlović I, Pisinov B. The quality of goat meat and it's impact on human health. Biotechnol Anim Husb. 2016;32(2):111-122. DOI: https://doi.org/10.2298/BAH1602111I

Corazzin, M, Del Bianco S, Bovolenta S, Piasentier E. Carcass characteristics and meat quality of sheep and goat. In More than beef, pork and chicken–The production, processing, and quality traits of other sources of meat for human diet. Springer, Cham. 2019;119-165. DOI: https://doi.org/10.1007/978-3-030-05484-7_6

Dewhurst RJ, Moloney AP. Modification of animal diets for the enrichment of dairy and meat products with omega-3 fatty acids [Internet]. In: Food enrichment with omega-3 fatty acids. Woodhead Publishing Limited; 257–287 p. Available from: http://dx.doi.org/10.1533/9780857098863.3.257 DOI: https://doi.org/10.1533/9780857098863.3.257

Shingfield KJ, Bonnet M, Scollan ND. Recent developments in altering the fatty acid composition of ruminant-derived foods. Animal [Internet]. 2013;7(SUPPL.1):132–162. Available from: http://dx.doi.org/10.1017/S1751731112001681 DOI: https://doi.org/10.1017/S1751731112001681

Arruda PD, Pereira ES, Pimentel PG, Bomfim MAD, Mizubuti IY, Ribeiro EDA, et al. Perfil de ácidos graxos no Longissimus dorsi de cordeiros Santa Inês alimentados com diferentes níveis energéticos. Semina: Ciênc. Agrár. 2012;33(3):1229-1240. DOI: https://doi.org/10.5433/1679-0359.2012v33n3p1229

Holanda MAC, Holanda MCR, Mendonça Júnior AF. Suplementação dietética de lipídios na concentração de ácido linoleico conjugado na gordura do leite. Acta Vet Bras. 2011;5(3):221-229.

Ladeira MM, Schoonmaker JP, Gionbelli MP, Dias JC, Gionbelli TR, Carvalho JRR, et al. Nutrigenomics and beef quality: A review about lipogenesis. Int. J. Mol. Sci. 2016;17(6), 1-21. DOI: https://doi.org/10.3390/ijms17060918

Madruga MS, Sousa WD, Rosales MD, Cunha MDGG, Ramos, JDF. Qualidade da carne de cordeiros Santa Inês terminados com diferentes dietas. R Bras Zootec. 2005;34(1):309-315. DOI: https://doi.org/10.1590/S1516-35982005000100035

Prache S, Gatellier P, Thomas A, Picard B, Bauchart D. Comparison of meat and carcass quality in organically reared and conventionally reared pasture-fed lambs. Animal. 2011;5(12):2001-2009. DOI: https://doi.org/10.1017/S1751731111001030

Barros MCC, da Silva FF, Silva RR, Simionato JI, Guimarães GS, da Silva LL, et al. Glicerina bruta na dieta de ovinos confinados: Composição centesimal e perfil de ácidos graxos do longissimus dorsi. Semina: Ciênc. Agrár. 2015;36(1), 431-442. DOI: https://doi.org/10.5433/1679-0359.2015v36n1p431

McAfee AJ, McSorley EM, Cuskelly GJ, Moss BW, Wallace JMW, Bonham MP, et al. Red meat consumption: An overview of the risks and benefits. Meat Sci [Internet]. 2010;84(1):1–13. Available from: http://dx.doi.org/10.1016/j.meatsci.2009.08.029 DOI: https://doi.org/10.1016/j.meatsci.2009.08.029

EFSA (European Food Safety Authority). Dietary reference values for nutrients summary report. Support Publ. 2017;14(12):e15121E. DOI: https://doi.org/10.2903/sp.efsa.2017.e15121

Castro T, Cabezas A, Fuente J De, Isabel B, Manso T, Jimeno V. Animal performance and meat characteristics in steers reared in intensive conditions fed with different vegetable oils. Anim Int J Anim Biosci [Internet]. 2016;10(3):520–530. Available from: http://dx.doi.org/10.1017/S1751731115002554 DOI: https://doi.org/10.1017/S1751731115002554

Fiorentini G, Lage JF, Carvalho IPC, Messana JD, Canesin RC, Reis RA, et al. Lipid sources with different fatty acid profile alters the fatty acid profile and quality of beef from confined nellore steers. Asian-Australasian J Anim Sci. 2015;28(7):976–986. DOI: https://doi.org/10.5713/ajas.14.0893

Ulbricht TL, Southgate DAT. Coronary heart disease: seven dietary factors. The Lancet. 1991;338(8773):985–992. DOI: https://doi.org/10.1016/0140-6736(91)91846-M

Salter AM. Dietary fatty acids and cardiovascular disease. Animal. 2013;7,163–171. DOI: https://doi.org/10.1017/S1751731111002023

WHO/FAO (World Health Organization/Food and Agriculture Organization). Diet, nutrition and the prevention of chronic diseases. Geneva, Switzerland: WHO Technical Report Series; 2003.

Givens DI, Kliem KE, Gibbs RA. The role of meat as a source of n-3 polyunsaturated fatty acids in the human diet. Meat Sci. 2006;74:209-218. DOI: https://doi.org/10.1016/j.meatsci.2006.04.008

Ntambi JM. Regulation of stearoyl-CoA desaturase by polyunsaturated fatty acids and cholesterol. J Lipid Res [Internet]. 1999;40(9):1549–1558. Available from: http://dx.doi.org/10.1016/S0022-2275(20)33401-5 DOI: https://doi.org/10.1016/S0022-2275(20)33401-5

Mosley EE, Powell GL, Riley MB, Jenkins TC. Microbial biohydrogenation of oleic acid to trans isomers in vitro. J Lipid Res [Internet]. 2002;43(2):290–296. Available from: http://dx.doi.org/10.1016/S0022-2275(20)30171-1 DOI: https://doi.org/10.1016/S0022-2275(20)30171-1

Mckain N, Shingfield KJ, Wallace RJ, Wallace RJ. Metabolism of conjugated linoleic acids and 18 : 1 fatty acids by ruminal bacteria : products and mechanisms. Microbiology, 2010;156(2):579-588 DOI: https://doi.org/10.1099/mic.0.036442-0

Griinari JM, Bauman DE. Biosynthesis of conjugated linoleic acid and its incorporation into meat and milk in ruminants. In: Advances in conjugated linoleic acid research (ed. MP Yurawecz, M Mossoba, JKG Kramer, MW Pariza and G Nelson), 1999;1(1):180–200. AOCS Press, Champaign, IL, USA.

Scollan ND, Lee MR, Enserb M. Biohydrogenation and digestion of long chain fatty acids in steers fed on Lolium perenne bred for elevated levels of water-soluble carbohydrate. Anim Res, 2003;52(6):501-511. DOI: https://doi.org/10.1051/animres:2003040

Bessa RJB, Lourenço M, Portugal PV, Santos-Silva J. Effects of previous diet and duration of soybean oil supplementation on light lambs carcass composition, meat quality and fatty acid composition. Meat Sci, 2008;80(4), 1100-1105. DOI: https://doi.org/10.1016/j.meatsci.2008.05.001

Downloads

Publicado

2022-07-13

Como Citar

1.
Vilarindo de Sousa S. LIPÍDIOS EM DIETAS PARA RUMINANTES E SEUS EFEITOS SOBRE A QUALIDADE DA CARNE. RVZ [Internet]. 13º de julho de 2022 [citado 16º de abril de 2024];29:1-12. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/692

Edição

Seção

Artigos de Revisão

Artigos mais lidos pelo mesmo(s) autor(es)