MICROBIOTA BACTERIANA E ANTIBIOGRAMA DA CAVIDADE ORAL DE SERPENTES MANTIDAS SOB CUIDADOS HUMANOS
DOI:
https://doi.org/10.35172/rvz.2025.v32.1689Palabras clave:
antimicrobianos, enterobacterias, aislamiento bacteriano, reptiles, resistencia bacteriana, zoológicosResumen
Los zoológicos modernos desempeñan un papel esencial en la conservación de la biodiversidad, contribuyendo al manejo de especies silvestres mantenidas bajo cuidado humano. Las serpientes pueden albergar bacterias con potencial zoonótico en su cavidad oral, representando un riesgo tanto para la salud de los reptiles como para otros animales y humanos. Este estudio tuvo como objetivo evaluar la microbiota bacteriana de la cavidad oral de serpientes de las familias Boidae, Colubridae y Dipsadidae, mantenidas en el Parque Zoológico Municipal Quinzinho de Barros, en Sorocaba/SP, Brasil. La investigación se realizó mediante la recolección de muestras de la cavidad oral de 30 serpientes, utilizando hisopos estériles. Las muestras fueron cultivadas en Agar MacConkey y sometidas a pruebas bioquímicas, tinción de Gram y antibiogramas para la identificación bacteriana y evaluación de la sensibilidad a los antimicrobianos. Los resultados indicaron la presencia de diversas bacterias Gram-negativas y Gram-positivas, siendo Citrobacter freundii la especie más prevalente, seguida por Klebsiella pneumoniae, Serratia spp., Salmonella spp. y Escherichia coli. Las pruebas de sensibilidad antimicrobiana demostraron que Meropenem y Piperacilina fueron los antibióticos más eficaces, con tasas de sensibilidad del 85,2%, mientras que otros fármacos, como ampicilina y cefotaxima, mostraron mayor resistencia, variando entre 40,7% y 59,3%. Las técnicas empleadas permitieron mapear la microbiota bacteriana de la cavidad oral de las serpientes estudiadas y evaluar la resistencia antimicrobiana. Estos datos son fundamentales para el desarrollo de estrategias de manejo sanitario y tratamientos más eficaces, reduciendo los riesgos de infecciones y resistencia bacteriana en serpientes bajo cuidado humano.
Citas
D'Cruze N, Khan S, Carder G, Megson D, Coulthard E, Norrey J, et al. A global review of animal–visitor interactions in modern zoos and aquariums and their implications for wild animal welfare. Animals (Basel). 2019;9(6):332. D’Cruze, N., Khan, S., Carder, G., Megson, D., Coulthard, E., Norrey, J., & Groves, G. (2019). A Global Review of Animal–Visitor Interactions in Modern Zoos and Aquariums and Their Implications for Wild Animal Welfare. Animals, 9(6), 332. https://doi.org/10.3390/ani9060332
Brando S, Herrelko E. Wild animals in the city: Considering and connecting with animals in zoos and aquariums. The International Library of Environmental, Agricultural and Food Ethics. 2021. p. 341-360. https://doi.org/10.1007/978-3-030-63523-7_19
Duque FG, Ferreira CS, Laste VJ, Silva BL, Campacci MS, Pacheco BF. Zoológico e aquários: Sua importância contemporânea. Rev Bras Educ Ambient. 2021;16(5):8-26. https://doi.org/10.34024/revbea.2021.v16.11711
Hu X, Yang L, Zhang Y, Yang M, Li J, Fan Y, Guo P, Tian Z. Fecal and oral microbiome analysis of snakes from China reveals a novel natural emerging disease reservoir. Front Microbiol. 2024;11:14:1339188. https://doi.org/10.3389/fmicb.2023.1339188
Jacobson ER. Antibiotic therapy for reptiles. Current Veterinary Therapy XIII. Small Animal Practice 2000. p. 1168-1169.
Blaylock R, et al. Normal oral bacterial flora from some southern African snakes. Onderstepoort J Vet Res. 2001;68(3):175-182.
Lin W, Tsai T. Comparisons of the oral microbiota from seven species of wild venomous snakes in Taiwan using the high-throughput amplicon sequencing of the full-length 16S rRNA gene. Biology (Basel). 2023;12(9):1206. https://doi.org/10.3390/biology12091206
Hedley J, Whitehead ML, Munns C, Pellett S, Abou‐Zahr T, Calvo Carrasco D, et al. Antibiotic stewardship for reptiles. J Small Anim Pract. 2021. p. 829-839. https://doi.org/10.1111/jsap.13402
Ghosh T, Biswas M, Roy P, Guin C. Short review of different microflora from the oral cavity of snakes. Uttar Pradesh J Zool. 2017;37(1&2):30-34. https://doi.org/10.3390/biology12091206
Zancolli G, Mahsberg D, Sickel W, Keller A. Reptiles as reservoirs of bacterial infections: real threat or methodological bias? Microb Ecol. 2015;70(3):579-584. https://doi.org/10.1007/s00248-015-0618-3
Ferreira Junior RS, Siqueira AK, Campagner MV, Salerno T, Soares TCS, Lucheis SB, et al. Comparison of wildlife and captivity rattlesnakes (Crotalus durissus terrificus) microbiota. Pesq Vet Bras. 2009;29(12):999-1003. https://doi.org/10.1590/S0100-736X2009001200008
Maugeri G, Lychko I, Sobral R, Roque A. Identification and antibiotic-susceptibility profiling of infectious bacterial agents: a review of current and future trends. Biotechnol J. 2018;14:e1700750. https://doi.org/10.1002/biot.201700750
Cristina RT, Kocsis R, Dégi J, Muselin F, Dumitrescu E, Tirziu E, et al. Pathology and prevalence of antibiotic-resistant bacteria: a study of 398 pet reptiles. Animals (Basel). 2022;12(10):1279. https://doi.org/10.3390/ani12101279
Dipineto L, Russo TP, Calabria M, et al. Oral flora of Python regius kept as pets. Lett Appl Microbiol. 2014;8(5):462-465. https://doi.org/10.1111/lam.12214
Liu H, Zhao Z, Xue Y, Ding K, Xue Q. Fatal cases of Citrobacter freundii septicemia and encephalitis in sheep. J Vet Diagn Invest. 2018;30(2):245-248. https://doi.org/10.1177/1040638717731090
Su HY, Hussain B, Hsu BM, Lee KH, Mao YC, Chiang LC, et al. Bacterial community analysis identifies Klebsiella pneumoniae as a native symbiotic bacterium in the newborn Protobothrops mucrosquamatus. BMC Microbiol. 2023;23(1):213. https://doi.org/10.1186/s12866-023-02936-4
Hedley J. Anatomy and disorders of the oral cavity of reptiles and amphibians. Vet Clin North Am Exot Anim Pract. 2016;19(3):689-706. https://doi.org/10.1016/j.cvex.2016.04.002
Chinnadurai SK, Devoe RS. Selected infectious diseases of reptiles. Vet Clin North Am Exot Anim Pract. 2009;12(3):583–596. https://doi.org/10.1016/j.cvex.2009.06.008
Dai Y. Toxicity study of sulfonamides antibiotics. Front Sustain Dev. 2024;4(6):109-112. https://doi.org/10.54691/957gfp28
Liu L, Chen D, Liu L, Lan R, Hao S, Jin W, et al. Genetic diversity, multidrug resistance, and virulence of Citrobacter freundii from diarrheal patients and healthy individuals. Front Cell Infect Microbiol. 2018;10(8):233. https://doi.org/10.3389/fcimb.2018.00233
Liu L, Lan R, Liu L, Wang Y, Zhang Y, Wang Y, Xu J. Antimicrobial resistance and cytotoxicity of Citrobacter spp. in Maanshan Anhui Province, China. Front Microbiol. 2017;20(8):1357. https://doi.org/10.3389/fmicb.2017.01357
Hayder T, Aljanaby A. Antibiotics susceptibility patterns of Citrobacter freundii isolated from patients with urinary tract infection in Al-Najaf governorate – Iraq. Int J Res Pharm Sci. 2019; 10(2):1481-1488. https://doi.org/10.26452/ijrps.v10i2.722
Rahman A, Shamsuzzaman S, Dola N. Antimicrobial susceptibility pattern and virulence genes detection in Citrobacter freundii isolated from patients of a tertiary care hospital, Bangladesh. Int Arab J Antimicrob Agents. 2022; 12(2):1-7. https://doi.org/10.3823/865
Liu, L., Qin, L., Hao, S., Lan, R., Xu, B., Guo, Y., Jiang, R., Sun, H., Chen, X., LV, X., Xu, J., Zhao, C. Lineage, Antimicrobial Resistance and Virulence of Citrobacter spp. Pathogens. 2020; 9(3):195. https://doi.org/10.3390/pathogens9030195
Makavchik S, Borisova M. Antibiotic resistance of Klebsiella pneumoniae and practical significance for veterinary medicine. Leg Reg Vet Med. 2023; 1:26-30. https://doi.org/10.52419/issn2782-6252.2023.1.26
Harada K, Shimizu T, Mukai Y, Kuwajima K, Sato T, Usui M, Tamura Y, Kimura Y, Miyamoto T, Tsuyuki Y, Ohki A, Kataoka Y. Phenotypic and molecular characterization of antimicrobial resistance in Klebsiella spp. isolates from companion animals in Japan: clonal dissemination of multidrug-resistant extended-spectrum β-lactamase-producing Klebsiella pneumoniae. Front Microbiol. 2016; 7:1021. https://doi.org/10.3389/fmicb.2016.01021
Sebola D, Oguttu J, Kock M, Qekwana D. Antimicrobial resistance patterns of Acinetobacter baumannii and Klebsiella pneumoniae isolated from dogs presented at a veterinary academic hospital in South Africa. Vet World. 2023;16:1880-1888. https://doi.org/10.14202/vetworld.2023.1880-1888
Kowalczyk J, Czokajło I, Gańko M, Śmiałek M, Koncicki A. Identification and antimicrobial resistance in Klebsiella spp. isolates from turkeys in Poland between 2019 and 2022. Animals (Basel). 2022; 2(22):3157. https://doi.org/10.3390/ani12223157
Abdullah A, Nadhom B, Al-Ammiri H. Isolation and identification of Serratia marcescens from bovine mastitis infections in Iraq and their susceptibility to antibiotics. J Entomol Zool Stud. 2017;5:489-492. https://doi.org/10.13140/RG.2.2.25863.83362
Allen J, Doidge N, Bushell R, Browning G, Marenda M. Healthcare-associated infections caused by chlorhexidine-tolerant Serratia marcescens carrying a promiscuous IncHI2 multi-drug resistance plasmid in a veterinary hospital. PLoS One. 2022; 17(3):e0264848. https://doi.org/10.1371/journal.pone.0264848
Cota J, Carvalho A, Dias I, Reisinho A, Bernardo F, Oliveira M. Salmonella spp. in pet reptiles in Portugal: prevalence and chlorhexidine gluconate antimicrobial efficacy. Antibiotics (Basel). 2021; 10(3):324. https://doi.org/10.3390/antibiotics10030324
Abatcha M, Zakaria Z, Kaur D, Thong K. Prevalence and antimicrobial susceptibility of Salmonella spp. isolated from snakes in Peninsular Malaysia. J Vet Adv. 2013;3:306-312.
Dégi J, Herman V, Radulov I, Morariu F, Florea T, Imre K. Surveys on pet-reptile-associated multi-drug-resistant Salmonella spp. in the Timișoara Metropolitan Region—Western Romania. Antibiotics (Basel). 2023; 12(7):1203. https://doi.org/10.3390/antibiotics12071203
Marín C, Lorenzo-Rebenaque L, Laso O, Villora-Gonzalez J, Vega S. Pet reptiles: a potential source of transmission of multidrug-resistant Salmonella. Front Vet Sci. 2021;7. https://doi.org/10.3389/fvets.2020.613718
Xia Y, Li H, Shen Y. Antimicrobial drug resistance in Salmonella enteritidis isolated from edible snakes with pneumonia and its pathogenicity in chickens. Front Vet Sci. 2020; 7:613718. https://doi.org/10.3389/fvets.2020.00463
Tang P, Divers S, Sanchez S. Antimicrobial susceptibility patterns for aerobic bacteria isolated from reptilian samples submitted to a veterinary diagnostic laboratory: 129 cases (2005-2016). J Am Vet Med Assoc. 2020;257(3):305-312. https://doi.org/10.2460/javma.257.3.305
Mao Y, Liu P, Hung D, Lai W, Huang S, Hung Y, et al. Bacteriology of Naja atra snakebite wound and its implications for antibiotic therapy. Am J Trop Med Hyg. 2016;94(5):1129-1135. https://doi.org/10.4269/ajtmh.15-0667
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Samanta Arruda Quile de Oliveira, Julia Mara Souza Eisenlohr, Mônica Rodrigues Alves, Beatriz Fernandes de Camargo, Jéssica Parisi, Bianca Gianola Belline Silva, Rodrigo Hidalgo Friciello Teixeira

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.








