RELAÇÕES FILOGENÉTICAS DO VÍRUS DA RAIVA (RABIES LISSAVIRUS) EM DOIS DIFERENTES HOSPEDEIROS

Autores

  • Maicon da Silva Schreiber Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
  • Juliana Fachinetto UNIJUI https://orcid.org/0000-0002-0864-9643

DOI:

https://doi.org/10.35172/rvz.2024.v31.1537

Palavras-chave:

bat, cattle, evolution, viral disease, viral infection

Resumo

A Raiva é uma zoonose fatal que infecta várias espécies de mamíferos. Os morcegos são reconhecidos como hospedeiros do vírus da Raiva e sua principal fonte de alimento é o sangue de outros mamíferos, especialmente os bovinos. Quando se alimentam, os morcegos transmitem o vírus para o bovino os quais são vítimas da doença, contribuindo para perdas econômicas e riscos de infecção para humanos. Baseado nesta afinidade do ciclo da Raiva entre morcegos e bovinos, o objetivo deste estudo foi analisar as relações filogenéticas de amostras do vírus da Raiva em ambos os hospedeiros, bovinos e morcegos. O gene G do vírus da Raiva foi escolhido para esta pesquisa porque ele está diretamente relacionado ao processo de infecção. Sequências de nucleotídeos do gene G viral foram selecionadas no GenBank a partir de amostras obtidas de bovinos e morcegos infectados. Análises de Máxima Parcimônia foram conduzidas utilizando o software Molecular Evolutionary Genetics Analysis. A árvore de Máxima Parcimônia indicou uma relação filogenética entre o gene G de ambos os hospedeiros, indicando que o vírus evoluiu dos morcegos para os bovinos. A análise dos sítios parcimoniosamente informativos revelou que o gene G viral apresentou mutações específicas em cada hospedeiro. O conhecimento sobre as relações evolutivas do vírus da Raiva e seus hospedeiros é crucial para identificar nos hospedeiros potenciais e novas rotas possíveis de infecção para humanos.

Referências

Oliveira RN, Freire CC, Iamarino A, Zanotto PM, Pessoa R, Sanabani SS, De Souza SP, Castilho J G, Batista HBCR, Carnieli Junior P, Macedo CI, Watanabe JT, Brandão PE (2020) Ravies virus diversification in aerial and terrestrial mammals. Genet Mol Biol 43:e20190370. https://doi.org/10.1590/1678-4685-GMB-2019-0370 DOI: https://doi.org/10.1590/1678-4685-gmb-2019-0370

Moutinho FFB, Andrade MGA, Nunes VMA, Rubião ECN, Batista EBCR, Romijn PC, Cattaneo CA, Oliveira FG, Oliveira RN, Marcanth N, Silvestre LGGR, Borges FVB, Bruno FF (2020) Rabies in Callithrix sp. in the urban area of Niterói, Rio de Janeiro, Brazil. Rev Soc Bras Med Trop 53:e20190402. https://doi.org/10.1590/0037-8682-0402-2019 DOI: https://doi.org/10.1590/0037-8682-0402-2019

Gilbert AT (2018) Rabies virus vectors and reservoir species. Rev Sci Tech 37:371-384. https://doi.org/10.20506/rst.37.2.2808 DOI: https://doi.org/10.20506/rst.37.2.2808

Meske M, Fanelli A, Rocha F, Awada L, Soto PC, Mapitse N, Tizzani P (2021) Evolution of Rabies in South America and Inter-Species Dynamics (2009–2018). Trop Med Infect Dis 6:98-116. https://doi.org/10.3390/tropicalmed6020098 DOI: https://doi.org/10.3390/tropicalmed6020098

Araújo DB, Duarte N, Crus NG, Nogi KI, Caporale G, Franco I, Soares Junior F, Martorelli L, Rolim BN, Durigon EL, Favoretto S (2019) Rabies neutralizing antibodies in terrestrial sylvatic animals from a region in Brazil endemic for two independent wildlife rabies variants. Int J Infect Dis 79:58. https://doi.org/10.1016/j.ijid.2018.11.152 DOI: https://doi.org/10.1016/j.ijid.2018.11.152

Santos BL, Bruhn FRP, Coelho ACB, Estima-Silva P, Echenique JV, Sallis ESV, Schild AL (2019) Epidemiological study of rabies in cattle in southern Brazil: spatial and temporal distribution from 2008 to 2017. Pesq Vet Bras 39:460-468. https://doi.org/10.1590/1678-6160-PVB-6088 DOI: https://doi.org/10.1590/1678-6160-pvb-6088

ICTV - International Committee On Taxonomy Of Viruses (2019) Taxonomy history: Rabies lyssavirus. https://talk.ictvonline.org/taxonomy/p/taxonomy-history?taxnode_id=201901733. Accessed 30 June 2022.

Velthuis AJW, Grimes JM, Fodor E (2021) Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19:303–318. https://doi.org/10.1038/s41579-020-00501-8 DOI: https://doi.org/10.1038/s41579-020-00501-8

Huang J, Zhang Y, Huang Y, Gnanadurai CW, Zhou M, Zhao L, Fu ZF (2017) The ectodomain of rabies virus glycoprotein determines dendritic cell activation. Antiviral Res 141:1-6. https://doi.org/10.1016/j.antiviral.2017.01.022 DOI: https://doi.org/10.1016/j.antiviral.2017.01.022

Rodriguez MC, Fontana D, Garay E, Prieto C (2021) Detection and quantification of anti-rabies glycoprotein antibodies: current state and perspectives. Appl Microbiol Biotechnol 105:6547-6557. https://doi.org/10.1007/s00253-021-11515-4 DOI: https://doi.org/10.1007/s00253-021-11515-4

Hu SC, Hsu CL, Lee MS, Tu YC, Chang JC, Wu CH, Lee SH, Ting LJ, Tsai KR, Cheng MC (2018) Lyssavirus in Japanese pipistrelle, Taiwan. Emerg Infect Dis 24:782-785. https://doi.org/10.3201/eid2404.171696 DOI: https://doi.org/10.3201/eid2404.171696

Lobo FP, Mota BEF, Pena SDJ, Azevedo V, Macedo AM, Tauch A, Machado CR, Franco GR (2009) Vírus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts. Plos One 4:e6282. https://doi.org/10.1371/journal.pone.0006282 DOI: https://doi.org/10.1371/journal.pone.0006282

Bouslama Z, Kharmachi H, Basdouri N, Ben Salem J, Ben Maiez S, Handous M, Saadi M, Ghram A, Turki I (2021) Molecular Epidemiology of Rabies in Wild Canidae in Tunisia. Viruses 13:2473. https://doi.org/10.3390/v13122473 DOI: https://doi.org/10.3390/v13122473

Wisser CS, Thaler Neto A, Batista HBCR, Mori E, Chierato MER, Fernandes MES, Traverso SD (2020) Cattle rabies: the effect of clinical evolution, viral genetic lineage, and viral load on the severity of histological lesions. Pesq Vet Bras 40:227-233. https://doi.org/10.1590/1678-5150-PVB-6438 DOI: https://doi.org/10.1590/1678-5150-pvb-6438

Mialhe PJ, Moschini LE, Trevisan DP. (2021) Vampire Bat Desmodus rotundus shelters in the central region of São Paulo state, Brazil. Vet Zootec 28:001-009. https://doi.org/10.35172/rvz.2021.v28.609 DOI: https://doi.org/10.35172/rvz.2021.v28.609

Mialhe PJ, Moschini LE (2020) Repopulação de abrigos de morcegos hematófagos Desmodus rotundus após ações de controle seletivo direto no município de São Pedro – SP. Med Vet 14:297-306. https://doi.org/10.26605/medvet-v14n4-2141 DOI: https://doi.org/10.26605/medvet-v14n4-2141

Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547-1549 DOI: https://doi.org/10.1093/molbev/msy096

Carnelutti JF, De Quadros JM, Martins M, Batista HBCR, Weiblen R, Flores EF (2017) Glycoprotein-G-gene based molecular and phylogenetic analysis of rabies viroses associated with a larger outbreak of bovine rabies in Southern Brazil. Arch Virol 162:3697-3704. https://doi.org/10.1007/s00705-017-3533-8 DOI: https://doi.org/10.1007/s00705-017-3533-8

Troupin C, Dacheux L, Tanguy M, Sabeta C, Blanc H, Bourchy C, Vignuzzi M, Duchene S, Holmes EC, Bourhy H (2016) Large-Scale Phylogenomic Analysis Reveals the Complex Evolutionary History of Rabies Virus in Multiple Carnivore Hosts. PLoS Pathog 12:e1006041. https://doi.org/10.1371/journal.ppat.1006041 DOI: https://doi.org/10.1371/journal.ppat.1006041

Kuzmin IV, Shi M, Orciari LA, Yager PA, Velasco-Villa A, Kuzmina NA, Streicker DG, Bergman DL, Rupprecht CE (2012) Molecular Inferences Suggest Multiple Host Shifts of Rabies Virus from Bats to Mesocarnivores In Arizona During 2001-2009. PLoS Pathog 8:1-11. https://doi.org/10.1371/journal.ppat.1002786 DOI: https://doi.org/10.1371/journal.ppat.1002786

Rupprecht CE, Turmelle A, Kuzmin IV (2011) A perspective on Lyssavirus emergence and perpetuation. Curr Opin Virol 1:662-670. https://doi.org/10.1016/j.coviro.2011.10.014 DOI: https://doi.org/10.1016/j.coviro.2011.10.014

Martson DA, Banyard AC, McElhinney LM, Freuling CM, Finke S, De Lamballerie X, Müller T, Fooks AR (2018) The Lyssavirus host-specificity conundrum — rabies virus — the exception not the rule. Curr Opin Virol 28:68-73. https://doi.org/10.1016/j.coviro.2017.11.007 DOI: https://doi.org/10.1016/j.coviro.2017.11.007

Fernandes MES, Carnieli Junior P, Gregório ANF, Kawai JGC, Oliveira RN, Almeida LL, Rosa JCA, Ferreira JC, Traveso SD, Roehe PM, Batista HBCR (2020) Phylogenetic analysis of rabies viroses isolated from cattle in Southern Brazil. Virus Genes 56:209-216. https://doi.org/10.1007/s11262-020-01730-y DOI: https://doi.org/10.1007/s11262-020-01730-y

Badrane H, Tordo, N (2001) Host switching in Lyssavirus history from the Chiroptera to the Carnivora orders. J. Virol 75:8096-8104. https://doi.org/10.1128/jvi.75.17.8096-8104.2001 DOI: https://doi.org/10.1128/JVI.75.17.8096-8104.2001

Velasco-Villa A, Orciari LA, Souza V, Juárez-Islas V, Gomez-Sierra M (2005) Molecular epizootiology of rabies associated with terrestrial carnivores in Mexico. Virus Res 111:13-27. https://doi.org/10.1016/j.virusres.2005.03.007 DOI: https://doi.org/10.1016/j.virusres.2005.03.007

Farris JS (1989) The retention index and the rescaled consistency index. Cladistics 5:417-419. https://doi.org/10.1111/j.1096-0031.1989.tb00573.x DOI: https://doi.org/10.1111/j.1096-0031.1989.tb00573.x

Downloads

Publicado

2024-01-13

Como Citar

1.
da Silva Schreiber M, Fachinetto J. RELAÇÕES FILOGENÉTICAS DO VÍRUS DA RAIVA (RABIES LISSAVIRUS) EM DOIS DIFERENTES HOSPEDEIROS. RVZ [Internet]. 13º de janeiro de 2024 [citado 3º de dezembro de 2024];31:1-7. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/1537

Edição

Seção

Artigos Originais