POTENCIAL ANTIBACTERIANO DE LOS ACEITES ESENCIALES DE MELALEUCA ALTERNIFOLIA, MENTHA PIPERITA Y ROSMARINUS OFFICINALIS CONTRA AISLADOS DE STAPHYLOCOCCUS PSEUDINTERMEDIUS
DOI:
https://doi.org/10.35172/rvz.2025.v32.1693Palabras clave:
Pioderma canina; Resistencia bacteriana; MRSP; Concentraciones inhibitorias mínimas; Tea tree.Resumen
Staphylococcus pseudintermedius es el principal agente oportunista relacionado con la pioderma canina, formando parte de la microbiota natural de los folículos pilosos. Se considera la principal causa del uso de antibióticos en animales pequeños. Los informes de Staphylococcus pseudintermedius resistente a meticilina (MRSP) se han vuelto frecuentes en la rutina clínica veterinaria de animales pequeños. Los aceites esenciales (AE) han sido estudiados y se han convertido en una alternativa terapéutica. Se evaluó la actividad antibacteriana in vitro de los AE de Melaleuca alternifolia, Mentha piperita y Rosmarinus officinalis contra los aislados de MRSP y Staphylococcus pseudintermedius susceptible a meticilina (MSSP). Los ensayos se realizaron utilizando el método de microdilución en caldo para determinar las concentraciones inhibitorias mínimas (CIM). Se colocaron diferentes concentraciones de los AE (31,25 a 64.000 μg/ml). Los valores de CIM de los AE de M. alternifolia, M. piperita y R. officinalis contra el aislado de MRSP fueron 10.667, 32.000 y 42.666 μg/ml, respectivamente. M. piperita (AEMP) mostró el valor más bajo de CIM (5.333 μg/ml) y el AE de M. alternifolia (AEMA) mostró el valor más alto de CIM (37.333 μg/ml) contra MSSP. Por lo tanto, la efectividad antibacteriana de los AE puede considerarse para su uso terapéutico futuro.
Citas
Sasaki T, Kikuchi K, Tanaka Y, Takahashi N, Kamata S, Hiramatsu K. Reclassification of phenotypically identified Staphylococcus intermedius strains. J Clin Microbiol., 2007;45:2770-2778. https://doi.org/10.1128/jcm.00360-07. DOI: https://doi.org/10.1128/JCM.00360-07
Fitzgerald JR. The Staphylococcus intermedius group of bacterial pathogens: species re-classification, pathogenesis and the emergence of methicillin resistance. Vet Dermatol. 2009;20:490–495. https://doi.org/10.1111/j.1365-3164.2009.00828.x. DOI: https://doi.org/10.1111/j.1365-3164.2009.00828.x
Perreten V, Kadlec K, Schwarz S, Grönlund Andersson U, Finn M, Greko C, Moodley A, Kania SA, Frank LA, Bemis DA, Franco A, Iurescia M, Battisti A, Duim B, Wagenaar JA, van Duijkeren E, Weese JS, Fitzgerald JR, Rossano A, Guardabassi L. Clonal spread of methicillin-resistant Staphylococcus pseudintermedius in Europe and North America: an international multicentre study. J Antimicrob Chemother. 2010;65:1145–1154. https://doi.org/10.1093/jac/dkq078. DOI: https://doi.org/10.1093/jac/dkq078
Ebani VV, Bertelloni F, Najar B, Nardoni S, Pistelli L, Mancianti F. Antimicrobial activity of essential oils against Staphylococcus and Malassezia strains isolated from canine dermatitis. Microorganisms. 2020;8:252. https://doi.org/10.3390/microorganisms8020252. DOI: https://doi.org/10.3390/microorganisms8020252
Yap PSX, Yiap BC, Ping HC, Lim SH. Essential oils, a new horizon in combating bacterial antibiotic resistance. Open Microbiol J. 2014;8:06-14,. https://doi.org/10.2174/1874285801408010006. DOI: https://doi.org/10.2174/1874285801408010006
Donato R, Sacco C, Pini G, Bilia AR. Antifungal activity of different essential oils against Malassezia pathogenic species. J Ethnopharmacol. 2020;249:112376. https://doi.org/10.1016/j.jep.2019.112376. DOI: https://doi.org/10.1016/j.jep.2019.112376
Baudoux D. O Grande Manual Da Aromaterapia De Dominique Baudoux, 1st Ed. Belo Horizonte, Editora Laszlo, 2018. 673 p.
Borrás-Linares I, Stojanovic Z, Quirantes-Piné R, Arráez-Román D, Švarc-Gajić J, Fernández-Gutiérrez A, Segura-Carretero A. Rosmarinus officinalis leaves as a natural source of bioactive compounds. Int J Mol Sci. 2014;15:20585–20606. https://doi.org/10.3390/ijms151120585 DOI: https://doi.org/10.3390/ijms151120585
Desam NR, Al-Rajab AJ, Sharma M, Mylabathula MM, Gowkanapalli RR, Albratty M. Chemical constituents, in vitro antibacterial and antifungal activity of Mentha × Piperita L.(Peppermint) essential oils. J King Saud Univ Sci. 2019;31:528-533. https://doi.org/10.1016/j.jksus.2017.07.013. DOI: https://doi.org/10.1016/j.jksus.2017.07.013
Mahendran G, Rahman LU. Ethnomedicinal, phytochemical and pharmacological updates on peppermint (Mentha × Piperita L.) a review. Phytother Res. 2020;34:2088-2139. https://doi.org/10.1002/ptr.6664. DOI: https://doi.org/10.1002/ptr.6664
Carvalho MA. Detecção do gene mecA e perfil de resistência antimicrobiana em isolados de piodermites caninas no município de Botucatu (Brasil). Botucatu, São Paulo, Brasil: Universidade Estadual Paulista; 2020.
Clinical And Laboratory Standards Institute (CLSI), Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. CLSI Standard, 11th ed; 2018.
Clinical And Laboratory Standards Institute (CLSI), Performance standards for antimicrobial susceptibility testing, CLSI Supplement M100, 29th ed.; 2019.
Wińska K, Mączka W, Łyczko J, Grabarczyk M, Czubaszek A, Szumny A. Essential oils as antimicrobial agents - myth or real alternative? Molecules, 2019;24:2130. https://doi.org/10.3390/molecules24112130. DOI: https://doi.org/10.3390/molecules24112130
Lambert PA. Cellular impermeability and uptake of biocides and antibiotics in gram-positive bacteria and mycobacteria. J Appl Microbiol. 2002;92:46-54. https://doi.org/10.1046/j.1365-2672.92.5s1.7.x. DOI: https://doi.org/10.1046/j.1365-2672.92.5s1.7.x
Saad NY, Muller CD, Lobstein A. Major bioactivities and mechanism of action of essential oils and their components. Flavour Fragr J. 2013;28:269– 279. https://doi.org/10.1002/ffj.3165. DOI: https://doi.org/10.1002/ffj.3165
Raut JS, Karuppayil SMA. Status review on the medicinal properties of essential oils. Ind Crops Prod. 2014;62:250–264. https://doi.org/10.1016/j.indcrop.2014.05.055. DOI: https://doi.org/10.1016/j.indcrop.2014.05.055
Oussalah M, Caillet S, Lacroix M. Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli o157:h7 and Listeria monocytogenes. J Food Prot. 2006;69:1046–1055. https://doi.org/10.4315/0362-028X-69.5.1046. DOI: https://doi.org/10.4315/0362-028X-69.5.1046
Meroni G, Cardin E, Rendina C, Herrera Millar VR, Soares Filipe JF, Martino PA. In vitro efficacy of essential oils from Melaleuca alternifolia and Rosmarinus officinalis, Manuka honey-based gel, and propolis as antibacterial agents against canine Staphylococcus pseudintermedius strains. Antibiotics. 2020;9:344. https://doi.org/10.3390/antibiotics9060344. DOI: https://doi.org/10.3390/antibiotics9060344
Andrade BFMT, Barbosa LN, Probst IS, Junior AF. Antimicrobial activity of essential oils. J Essent Oil Res. 2014;26:34–40. https://doi.org/10.1080/10412905.2013.860409. DOI: https://doi.org/10.1080/10412905.2013.860409
Singh R, Shushni MA, Belkheir A. Antibacterial and antioxidant activities of Mentha piperita L. Arab J Chem. 2015;8:322-328. https://doi.org/10.1016/j.arabjc.2011.01.019. DOI: https://doi.org/10.1016/j.arabjc.2011.01.019
Borges RS, Ortiz BLS, Pereira ACM, Keita H, Carvalho JCT. Rosmarinus officinalis essential oil: a review of its phytochemistry, anti-inflammatory activity, and mechanisms of action involved. J Ethnopharmacol. 2019;229:29-45. https://doi.org/10.1016/j.jep.2018.09.038. DOI: https://doi.org/10.1016/j.jep.2018.09.038
Bozin B, Mimica-Dukic N, Samojlik I, Jovin E. Antimicrobial and antioxidant properties of Rosemary and Sage (Rosmarinus officinalis L. and Salvia officinalis L., Lamiaceae) essential oils. J Agric Food Chem. 2007;55:7879-7885. https://doi.org/10.1021/jf0715323. DOI: https://doi.org/10.1021/jf0715323
Patsilinakos A, Artini M, Papa R, Sabatino M, Božović M, Garzoli S, Vrenna G, Buzzi R, Manfredini S, Selan L, Ragno R. Machine learning analyses on data including essential oil chemical composition and in vitro experimental antibiofilm activities against Staphylococcus species. Molecules. 2019;24:890. https://doi.org/10.3390/molecules24050890. DOI: https://doi.org/10.3390/molecules24050890
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2025 Júlia Meira, Ana Flávia Marques Pereira, Tatiane Baptista Zapata, Gabriele Silva Dias, Guilherme de Brito Viana, Lucas Antonio Benso, Ary Fernandes Júnior, Adriano Sakai Okamoto, Luiz Henrique de Araújo Machado

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.








