FARINHA DE INSETOS NA ALIMENTAÇÃO DE NÃO RUMINANTES, UMA ALTERNATIVA ALIMENTAR

Autores

  • Túlio Leite Reis UFRRJ
  • Ana Carla Chaves Dias

DOI:

https://doi.org/10.35172/rvz.2020.v27.428

Palavras-chave:

Ingrediente, Produção Animal, Sustentabilidade, Proteínas

Resumo

Visto a crescente busca por alternativas para alimentação humana e animal, a utilização de uma fonte proteica proveniente da criação de insetos em larga escala, aparece como uma perspectiva atraente atualmente. A criação de insetos, devido à natureza das espécies, apresenta algumas vantagens que reforçam ainda mais sua utilização, como alimentar-se de uma gama de subprodutos da indústria, não competir com o uso de recursos alimentares, possuir alto valor nutricional, além de, quando consumidos, atuarem no desenvolvimento da microbiota benéfica e como imuno-moduladores. Alguns estudos destacam a utilização de farinhas de diferentes insetos em substituição a farinhas de origem animal e ao farelo de soja na alimentação de animais monogástricos, que além de fornecer um perfil de aminoácidos semelhante e/ou superior à esses ingredientes convencionais, podem reduzir o custo final da ração consumidas pela espécies monogástricas de interesse zootécnico, impactando significativamente no sistema produtivo. Alguns pontos acerca a viabilidade de produção dessas farinhas na utilização como fonte de proteína na alimentação animal merece destaque, sendo assim, o presente trabalho busca reunir as aplicações e resultados recentes obtidos com a utilização de farinha de insetos na alimentação e nutrição dos animais monogástricos, seus impactos no desempenho, saúde, além da qualidade dos produtos originados.

Referências

1 Sánchez-Muros MJ, Barroso FG, Manzano-Agugliaro F. Insect meal as renewable source of food for animal feeding: a review. J Cleaner Prod. 2014; 65: 16-27v. 65, p. 16-27, 2014. https://doi.org/10.1016/j.jclepro.2013.11.068
2 Collavo A, Glew RH, Huang YS, Chuang LT, Bosse R, PAOLETTI MG. House cricket small-scale farming. In: Ecological Implications of Minilivestock: Potential of Insects, Rodents, Frogs and Snails. Science Publishers. New Hampshire: Paoletti MG (Ed.), 2005, pp. 519-544. <https://www.researchgate.net/profile/Alberto_Collavo/publication/288624354_Housekricket_smallscale_farming_in_Ecological_implications_of_minilivestock_potential_of_insects_rodents_frogs_and_snails/links/568a9dfb08aebccc4e1a0d5e/Housekricket-smallscale-farming-in-Ecological-implications-of-minilivestock-potential-of-insects-rodents-frogs-and-snails.pdf>
3 Dossey AT, Morales-Ramos JÁ, Rojas MG. Insects as sustainable food ingredients: production, processing and food applications. Academic Press Elsevier; 2016. <https://books.google.com.br/books?hl=ptPT&lr=&id=fgFKCgAAQBAJ&oi=fnd&pg=PP1&dq=Insects+as+sustainable+food+ingredients:+production,+processing+and+food+applicationots=u4bXELCJm7&sig=3Ah2mhdaGkHGkmVtsdLqywXLm8#v=onepage&q=Insects%20as%20sustainable%20food%20ingredients%3A%20production%2C%20processing%20and%20food%20applications&f=false>
4 Van Huis A, Van Itterbeeck J, Klunder H, Mertens E, Halloran A, Muir G, Vantomme P. Edible insects: future prospects for food and feed security. Rome: Food and Agriculture Organization of the United Nations; 2013. https://library.wur.nl/WebQuery/wurpubs/fulltext/258042
5 Vilella LDM. Produção de insetos para uso na alimentação animal. [Trabalho de conclusão de curso apresentado como requisito para obtenção do grau de Zootecnista]. Porto Alegre: Faculdade de Agronomia, Universidade Federal do Rio Grande do Sul; 2018. https://www.lume.ufrgs.br/bitstream/handle/10183/180588/001072223.pdf?sequence=1&isAllowed=y
6 Ramos-Elorduy, J. González EA, Hernández AR, Pino JM. Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. J. Econ. Entomol. 2002;95(1):214-220. https://doi.org/10.1603/0022-0493-95.1.214
7 Oliveira MRD. Perfil e digestibilidade de farinhas de insetos avaliadas com galos cecectomizados. [Dissertação]. Lavras: Programa de Pós-Graduação em Zootecnia, Universidade Federal de Lavras; 2018. http://repositorio.ufla.br/jspui/bitstream/1/33446/1/DISSERTA%C3%87%C3%83O_Perfil%20e%20digestibilidade%20de%20farinhas%20de%20insetos%20avaliadas%20com%20galos%20cecectomizados.pdf
8 Longvah T, Mangthya K, Ramulu P. Nutrient composition and protein quality evaluation of eri silkworm (Samia ricinii) prepupae and pupae. Food Chem. 2011; 128:400-403. https://doi.org/10.1016/j.foodchem.2011.03.041
9 Wang D, Bai YY, Li JH, Zhang CX. Nutritional value of the field cricket (Gryllus testaceus Walker). Insect Sci. 2004;11:275-283. https://doi.org/10.1111/j.1744-7917.2004.tb00424.x
10 Rumpold BA, Schlüter OK. Insect-based protein sources and their potential for human consumption: Nutritional composition and processing. Anim Front. 2015;5(2):20–24. https://www.researchgate.net/profile/Birgit_Rumpold/publication/275016949_Insect-based_protein_sources_and_their_potential_for_human_consumption_Nutritional_composition_and_processing/links/552e36980cf2acd38cb90357.pdf
11 Esteban MA, Cuesta AJ, Ortuna J, Mesegue J. Immunomodulatory effects of dietary intake of chitin on gilthead seabream (Sparus aurata L.) innate imune system. Fish Shellfish Immunol. 2001;11:303-315. https://doi.org/10.1006/fsim.2000.0315
12 Al-Quazzaz MF, Ismail DB. Insect meal as a source of protein in animal diet. Anim Nutr Feed Techn. 2016;16:527-547. doi: 10.5958/0974-181X.2016.00038.X
13 Brinchmann BC, Bayat M, Brøgger T, Muttuvelu DV, Tjønneland A, Sigsgaard T. A possible role of chitin in the pathogenesis of asthma and allergy. Ann Agric. Environ. Med. 2011;18(1):7-12.
14 Alessandri G, Milani C, Duranti S, Mancabelli L, Ranjanoro T, Modica S, Carnevali L, Statello R, Bottacini F, Turroni F, Ossiprandi MC, Andrea Sgoifo A, Sinderen DV. Ability of bifidobacteria to metabolize chitin-glucan and its impact on the gut microbiota. Sci Rep. 2019;9(1):5755. https://doi.org/10.1038/s41598-019-42257-z
15 Bovera F, Piccolo G, Gasco L, Marono S, Loponte R, Vassalotti G, Mastellone V, Lombardi P, Attia YA, Nizza, A. Yellow mealworm larvae (Tenebrio molitor, L.) as a possible alternative to soybean meal in broiler diets. Brit Poultry Sci. 2015;56(5):569-575. https://doi.org/10.1080/00071668.2015.1080815
16 Makkar HPS, Tran G, Heuzé V, Ankers P. State-of-the-art on use of insects as animal feed. Anim. Feed Sci Technol. 2014;197:1-33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
17 Ramos-Elorduy J, Moreno JMP, Prado EE, Perez MA, Otero JL, De Guevara OL. Nutritional value of edible insects from the state of Oaxaca, Mexico. J. Food Compos. Anal. 1997;10(2):142-157. https://doi.org/10.1006/jfca.1997.0530
18 Kitsa K. Contribution des insectes comestibles à l'amélioration de la ration alimentaire au Kasai-Occidental à Zaire. Zaire-Afrique. 1989;239:511-519.
19 Ijaiya AT, Eko EO. Effect of replacing dietary fish meal with silkworm (Anaphe infracta) caterpillar meal on performance, carcass characteristics and haematological parameters of finishing broiler chicken. Pak. J. Nutri. 2009;8:850-855. https://doi.org/10.3923/pjn.2009.850.855
20 Schiavone A, De Marco M, Martínez S, Dabbou S, Renna M, Madrid J, Hernandez J, Rotolo L, Costa P, Gai F, Gasco, L. Nutritional value of a partially defatted and a highly defatted black soldier fly larvae (Hermetia illucens L.) meal for broiler chickens: apparent nutrient digestibility, apparent metabolizable energy and apparent ileal amino acid digestibility. J Anim Sci Biotechnol. 2017;8(1):51. https://doi.org/10.1186/s40104-017-0181-5
21 Dabbou S, Gai F, Biasato I, Capucchio MT, Biasibetti E, Dezzutto D, Meneguz M, Plachà I, Gasgo L, Schiavone A. Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. J Anim Sci Biotechnol. 2018;9(1):49. https://doi.org/10.1186/s40104-018-0266-9.
22 Macari M, Maiorka A. Função gastrintestinal e seu impacto no rendimento avícola. In: Conferência Apinco de Ciência e Tecnologia Avícolas; 2000, Campinas. Campinas: FACTA; 2000. p.161-174.
23 Altmann B, Neumann C, Velten S, Liebert F, Mörlein D. Meat quality derived from high inclusion of a micro-alga or insect meal as an alternative protein source in poultry diets: A pilot study. Foods. 2018;7(3):34. https://doi.org/10.3390/foods7030034
24 Sun T, Long R, Liu Z. The effect of a diet containing grasshoppers and access to free-range on carcase and meat physicochemical and sensory characteristics in broilers. Brit Poultry Sci. 2013;54(1):130-137. https://doi.org/10.1080/00071668.2012.756575
25 Cullere M, Tasoniero G, Giaccone V, Miotti-Scapin R, Claeys E, De Smet S, Dalle Zotte A. Black soldier fly as dietary protein source for broiler quails: apparent digestibility, excreta microbial load, feed choice, performance, carcass and meat traits. Anim. 2016;10(12):1923-1930. https://doi.org/10.1017/S1751731116001270
26 Mwaniki Z, Neijat M, Kiarie E. Egg production and quality responses of adding up to 7.5% defatted black soldier fly larvae meal in a corn–soybean meal diet fed to Shaver White Leghorns from wk 19 to 27 of age. Poultr. Sci. 2018;97(8):2829-2835. https://doi.org/10.3382/ps/pey118
27 Dalle Zotte A, Singh Y, Michiels J, Cullere M. Black Soldier Fly (Hermetia Illucens) as Dietary Source for Laying Quails: Live Performance, and Egg Physico-Chemical Quality, Sensory Profile and Storage Stability. Anim. 2019;9(3):115. https://doi.org/10.3390/ani9030115.
28 Secci G, Bovera F, Nizza S, Baronti N, Gasco L, Conte G, Serra A, Bonelli A, Parisi G. Quality of eggs from Lohmann Brown Classic laying hens fed black soldier fly meal as substitute for soya bean. Anim. 2018;12:2191–2197. https://doi.org/10.1017/S1751731117003603
29 Gariglio M, Dabbou S, Crispo M, Biasato I, Gai F, Gasco L, Piacente F, Odetti P, Bergagna S, Plachà I, Valle E, Colombino E, Capucchio MT, Schiavone A. Effects of the Dietary Inclusion of Partially Defatted Black Soldier Fly (Hermetia illucens) Meal on the Blood Chemistry and Tissue (Spleen, Liver, Thymus, and Bursa of Fabricius) Histology of Muscovy Ducks (Cairina moschata domestica). Anim. 2019;9(6)307. https://doi.org/10.3390/ani9060307
30 Moula, N, Detilleux J. A Meta-Analysis of the Effects of Insects in Feed on Poultry Growth Performances. Anim. 2019;9(5)201.
31 Di Giacomo K, Leury BJ. Insect meal: a future source of protein feed for pigs?. Anim. 2019;13(12):3022-3030. https://doi.org/10.3390/ani9050201
32 Dankwa D, Oddoye EOK, Mzamo KB. Preliminary studies on the complete replacement of fishmeal by house-fly-larvae-meal in weaner pig diets: Effects on growth rate, carcass characteristics, and some blood constituents. Ghana J Agric Sci. 2000;33:223–227. https://doi.org/10.4314/gjas.v33i2.1874
33 Ji YJ, Liu HN, Kong XF, Blachier F, Geng MM, Liu YY, Yin YC. Use of insect powder as a source of dietary protein in early-weaned piglets. J Anim Sci. 2016; 94:111–116. https://doi.org/10.2527/jas.2015-9555
34 Neumann C, Velten S, Liebert F. N balance studies emphasize the superior protein quality of pig diets at high inclusion level of algae meal (Spirulina platensis) or insect meal (Hermetia illucens) when adequate amino acid supplementation is ensured. Anim. 2018;8:1–14. https://doi.org/10.3390/ani8100172
35 Altmann BA, Neumann C, Rothstein S, Liebert F, Mörlein D. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Sci. 2019;153:26–34. https://doi.org/10.1016/j.meatsci.2019.03.001
36 Yu M, Li Z, Chen W, Rong T, Wang G, Li J, Ma X. Use of Hermetia illucens larvae as a dietary protein source: Effects on growth performance, carcass traits, and meat quality in finishing pigs. Meat Sci. 2019. https://doi.org/10.1016/j.meatsci.2019.05.008
37 Barroso FG, de Haro C, Sánchez-Muros MJ, Venegas E, Martínez-Sánchez A, Pérez-Bañón C. The potential of various insect species for use as food for fish. Aquacult. 2014;422:193-201. https://doi.org/10.1016/j.aquaculture.2013.12.024
38 Lira JA. Avaliação da farinha de tenébrio (Tenebrio molitor) na alimentação de juvenis de tambaqui (Colossoma macropomun) [dissertação]. Manaus: Universidade Nilton Lins e Instituto de Pesquisas da Amazônia; 2015.
39 Ezewudo BI, Monebi CO, Ugwumba AAA. Production and utilization of Musca domestica maggots in the diet of Oreochromis niloticus (Linnaeus, 1758) fingerlings. Afr J Agric Res. 2015;10(23):2363-2371. https://doi.org/10.5897/AJAR2014.9274
40 Sánchez‐Muros M, De Haro C, Sanz A, Trenzado CE, Villareces S, Barroso F G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquacult Nutr. 2015; 22(5): 943-955. https://doi.org/10.1111/anu.12313
41 Tubin JSB. Farinha de insetos na alimentação de tilápias em sistema de bioflocos e recirculação de água [dissertação]. Chapecó: Universidade do estado de Santa Catarina; 2017. https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=5027584
42 Fontes TV, de Oliveira KRB, Gomes Almeida IL, Maria Orlando T, Rodrigues, PB, Costa DVD. Digestibility of insect meals for nile tilapia fingerlings. Anim. 2019;9(4)181. https://doi.org/10.3390/ani9040181
43 Belghit I, Liland NS, Gjesdal P, Biancarosa I, Menchetti E, Li Y, Li Y, Waagbø R, Krogdahl A, Lock EJ. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquacult. 2019;503:609-619. https://doi.org/10.1016/j.aquaculture.2018.12.032
44 Henry MA, Gasco L, Chatzifotis S, Piccolo G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol. 2018;81:204-209. https://doi.org/10.1016/j.dci.2017.12.002
45 Gutowska MA, Drazen JC, Robison BH. Digestive chitinolytic activity in marine fishes of Monterey Bay. Comp Biochem Physiol A: Mol Integr Physiol. 2004;139(3):351-358. https://doi.org/10.1016/j.cbpb.2004.09.020
46 Zaki MA, Salem ME-S, Gaber MM, Nour AM. Effect of chitosan supplemented diet on survival, growth, feed utilization, body composition and histology of sea bass (Dicentrarchus labrax). World J Eng Technol. 2015;3:38–47. https://doi.org/10.4236/wjet.2015.34C005
47 Zani O. Sindirações - Boletim informativo do setor - Julho de 2019. São Paulo; 2019. https://sindiracoes.org.br/wpcontent/uploads/2019/07/boletim_informativo_do_setor_julho_2019_vs_final_port_sindiracoes.pdf>.
48 Lisenko KG. Valor nutricional de farinhas de insetos para cães e gatos [Tese]. Lavras: Universidade Federal de Lavras; 2017. http://repositorio.ufla.br/jspui/handle/1/28266
49 Bosch G, Vervoort J, Hendriks W. In vitro digestibility and fermentability of selected insects for dog foods. Anim Feed Sci Technol. 2016;221:174-184. https://doi.org/10.1016/j.anifeedsci.2016.08.018
50 Gasco L, Dabbou S, Trocino A, Xiccato G, Capucchio MT, Biasato I, Dezzutto D, Birolo M, Meneguz M, Schiavone A, Gai F. Effect of dietary supplementation with insect fats on growth performance, digestive efficiency and health of rabbits. J Anim Sci Biotechnol. 2019;10(4). https://doi.org/10.1186/s40104-018-0309-2
51 Martins C, Cullere M, Dalle Zotte A, Cardosi C, Alves AP, Bessa RJB, Freire JPB, Falcão-e-Cunha L. Incorporation of two levels of black soldier fly (Hermetia illucens L.) larva fat or extruded linseed in diets of growing rabbits: Effects on growth performance and diet digestibility. Czech J Anim Sci. 2018;63:356–362. https://doi.org/10.17221/22/2018-CJAS
52 Fernández C, Cobos A, Fraga MJ. The effect of fat inclusion on diet digestibility in growing rabbits. J Anim Sci. 1994;72(6):1508-1515. https://doi.org/10.2527/1994.7261508x
53 Njidda AA, Isidahomen CE. Haematology, blood chemistry and carcass characteristics of growing rabbits fed grasshopper meal as a substitute for fish meal. Pak Vet J. 2010;30:7–12. http://agris.fao.org/agris-search/search.do?recordID=DJ2012043356
54 Gasco L, Dabbou S, Gai F, Brugiapaglia A, Schiavone A, Birolo M, Xiccato G, Trocino A. Quality and Consumer Acceptance of Meat from Rabbits Fed Diets in Which Soybean Oil is Replaced with Black Soldier Fly and Yellow Mealworm Fats. Anim, 2019;9(9):629. https://doi.org/10.3390/ani9090629.
55 Marciano LEA, de Melo Araújo T, Lima NR, Fernandes LS, da Costa MLL. Desempenho de coelhos alimentados com farinha de Tenebrio molitor. Rev Bras M Amb. 2019;6(1):42-49. https://doi.org/10.5281/zenodo.3233029
56 Dalle Zotte A, Cullere M, Martins C, Alves SP, Freire JPB, Falcão-e-Cunha L, Bessa RJB. Incorporation of Black Soldier Fly (Hermetiaillucens L.) larva fat or extruded linseed in diets of growing rabbits and their effects on meat quality traits including detailed fatty acid composition. Meat Sci. 2018;146:50–58. https://doi.org/10.1016/j.meatsci.2018.08.002
57 Frape DL. Equine nutrition and feeding. New Jersey: Blackwell Publishing Ltda.; 2004.
58 National Research Council – NRC. Nutrients requirements of horses. In: National Research Council – NRC. Washington: National Academy of Science; 2007.

Arquivos adicionais

Publicado

2020-05-06

Como Citar

1.
Reis TL, Dias ACC. FARINHA DE INSETOS NA ALIMENTAÇÃO DE NÃO RUMINANTES, UMA ALTERNATIVA ALIMENTAR. RVZ [Internet]. 6º de maio de 2020 [citado 22º de janeiro de 2025];27:1-16. Disponível em: https://rvz.emnuvens.com.br/rvz/article/view/428

Edição

Seção

Artigos de Revisão