AGING CHANGES OF CANINE BRAIN – IMAGING ASPECTS

Authors

  • Viviam Rocco Babicsak
  • Luiz Carlos Vulcano

Keywords:

aging, brain, computed tomography, dog, magnetic resonance imaging

Abstract

Studies related to the verification of the aging changes in the brain of dogs have become very
important due to the growing medical care of elderly dogs. The determination of the findings
in a normal aging brain enables the identification of abnormalities in this process. In normal
condition, there are volumetric reduction of several brain regions associated with widening of
cerebral sulci; mild to moderate dilatation of the lateral ventricles; reduction in the height of
the hippocampus and enlargement of the temporal horns. Decrease in the attenuation of white
and gray matter as well as changes in intensity can also be observed in the brain images by
computed tomography and magnetic resonance imaging, respectively, in elderly patients. In
the latter imaging modality, hyperintense areas on T2-weighted and hypointense areas on T1-
weighted images have already been described in the brain of humans and dogs, respectively.
In these patients, an increase in the frequency of these lesions occurs with advancing age.

References

Beason-Held LL, Horwitz B. Aging Brain. In: Ramachandran VS. Encyclopedia of the Human Brain. New York: Academic Press, 2002. p.43-57.

Mosier JE. Effect of ageing on body systems of the dog. Vet Clin North Am Small Anim Pract. 1989;19:1-12.

Tapp PD, Siwak CT. The canine model of human brain aging: cognition, behavior, and neuropathology. In: Conn PM. Handbook of Models for Human Aging. New York: Academic Press, 2006. p.415-434.

Terry RD, DeTeresa R, Hansen LA. Neocortical cell counts in normal human adult aging. Ann Neurol. 1987;21:530-539.

Marner L, Nyengaard JR, Tang Y, Pakkenberg B. Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol. 2003;462:144-152.

Kruggel F. MRI-based volumetry of head compartments: normative values of healthy adults. Neuroimage. 2006;30:1-11.

Ge Y, Grossman RI, Babb JS, Rabin ML, Mannon LJ, Kolson DL. Age-related total gray matter and white matter changes in normal adult brain. Part I: volumetric MR imaging analysis. Am J Neuroradiol. 2002;23:1327-1333.

Courchesne E, Chisum HJ, Townsend J, Cowles A, Covington J, Egaas B, et al. Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology. 2000;216: 672-682.

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ, Frackowiak RS. A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage. 2001;14:21-36.

Sandor T, Albert M, Stafford J, Kemper T. Symmetrical and asymmetrical changes in brain tissue with age as measured on CT scans. Neurobiol Aging. 1990;11:21-27.

Von Braunmühl A. Alterserkrankungen des zentralnervensystems. In: Lubarsch H, Henke F, Rossle R. Handbuch der Speziellen Pathologischen Anatomie and Histologie. Berlin: Springer-Verlag. 1957. p.337-539.

Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatikos C. Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci. 2003;23:3295-3301.

Petersen RC, Jack Jr CR, Xu YC, Waring, SC, O’Brien PC, Smith GE, et al. Memory and MRI-based hippocampal volumes in aging and AD. Neurology. 2000;54:581-587.

Borràs D, Ferrer I, Pumarola M. Age-related changes in the brain of the dog. Vet Pathol. 1999;36:202-211.

Esiri MM, Hyman BT, Beyreuther K, Masters CL. Aging and dementia. In: Graham DI, Lantos PL. Greenfield’s Neuropathology. 6 ed. London: Arnold, 1997. p. 153-213.

Uchida K, Nakayama H, Goto N. Pathological studies on cerebral amyloid angiopathy, senile plaques and amyloide deposition in visceral organs in aged dogs. J Vet Med Sci. 1991;53:1037-1042.

Head E. Brain aging in dogs: parallels with human brain aging and Alzheimer’s disease. Vet Therapeutics. 2001:2:247-260.

Head E, McCleary R, Hahn FF, Milgram NW, Cotman CW. Region-specific age at onset of beta-amyloid in dogs. Neurobiol Aging. 2000;21:89-96.

Colle M-A, Hauw J-J, Crespeau F, Uchihara T, Akiyama H, Checler F, et al. Vascular and parenchymal Aβ deposition in the aging dog: correlation with behavior. Neurobiol Aging. 2000;21:695-704.

Prior R, D’Urso DE, Frank R, Prikulis I, Pavlakovic G. Loss of vessel wall viability in cerebral amyloid angiopathy. Neuroreport. 1996;7:562-564.

Su M-Y, Head E, Brooks WM, Wang Z, Muggenburg B, Adam GE, et al. Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging. 1998;19:479-485.

Scahill RI, Frost C, Jenkins R, Whitwell JL, Rossor MN, Fox NC. A longitudinal study of brain volume changes in normal aging using serial registered magnetic resonance imaging. Arch Neurol. 2003;60:989-994.

Pugliese M, Carrasco JP, Gomez-Anson B, Andrade C, Zamora A, Rodríguez MJ, et al. Magnetic resonance imaging of cerebral involutional changes in dogs as markers of aging: an innovative tool adapted from a human visual rating scale. Vet J. 2010;186:166-171.

Szentkuti A, Guderian S, Schiltz K, Kaufmann J, Münte TF, Heinze HJ, et al. Quantitative MR analyses of the hippocampus: unspecific metabolic changes in aging. J Neurol. 2004;251:1345-1353.

Pfefferbaum A, Sullivan EV, Jernigan TL, Zipursky RB, Rosenbloom MJ, Yesavage JA, et al. A quantitative analysis of CT and cognitive measures in normal aging and Alzheimer’s disease. Psychiatry Res. 1990;35:115-136.

Jernigan TL, Archibald SL, Fennema-Notestine C, Gamst AC, Stout JC, Bonner J, et al. Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiol Aging. 2001;22:581-594.

Walhovd KB, Fjell AM, Reinvang I, Lundervold A, Dale AM, Eilertsen DE, et al. Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiol Aging. 2005;26:1261-1270.

Luft AR, Skalej M, Schulz JB, Welte D, Kolb R, Bürk K, et al. Patterns of age-related shrinkage in cerebellum and brainstem observed in vivo using three-dimensional MRI volumetry. Cereb Cortex. 1999;9:712-721.

Matsumae M, Kikinis R, Mórocz IA, Lorenzo AV, Sándor T, Albert MS, et al. Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg. 1996;84:982-991.

Wanifuchi H, Shimizu T, Maruyama T. Age-related changes in the proportion of intracranial cerebrospinal fluid space measured using volumetric computerized tomography scanning. J Neurosurg. 2002;97:607–610.

Su M-Y, Tapp PD, Vu L, Chen Y-F, Chu Y, Muggenburg B, et al. A longitudinal study of brain morphometrics using serial magnetic resonance imaging analysis in a canine model of aging. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:389-397.

LeMay M. Radiologic changes of the aging brain and skull. Am J Roentgenol. 1984;143:383-389.

Gonzáles-Soriano J, García M., Contreras-Rodriguez J, Martínez-Saintz P, Rodrigués-Veiga E. Age-related changes in the ventricular system of the dog brain. Ann Anat. 2001;183:283-291.

Meyer JS, Takashima S, Terayama Y, Obara K, Muramatsu K, Weather S. CT changes associated with normal aging of the human brain. J Neurol Sci. 1994;123:200-208.

Masliah E, Mallory M, Hanson L, DeTeresa R, Terry RD. Quantitative synaptic alteration m the human neocortex during normal aging. Neurol. 1993;43:192-197.

Terayama Y, Meyer JS, Takashima S, Obara K, Weathers S. Comparisons of polio-araiosis and leuko-araiosis in dementias of ischemic vascular and Alzheimer types. J. Stroke Cerebrovasc Dis. 1993;3:267-275.

Meyer JS, Kawamura J, Terayama Y. White matter lesions in the elderly. J Neurol Sci. 1992;110:1-7.

Awad IA, Spetzler RF, Hodak CA, Awad CA, Carey R. Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. I. Correlation with age and cerebrovascular risk factors. Stroke. 1986;17:1084-1089.

Fuster JM. Frontal lobe and cognitive development. J Neurocytol. 2002;31:319-333.

Published

2023-04-19

How to Cite

1.
Babicsak VR, Vulcano LC. AGING CHANGES OF CANINE BRAIN – IMAGING ASPECTS . RVZ [Internet]. 2023 Apr. 19 [cited 2024 May 14];20(2):9-20. Available from: https://rvz.emnuvens.com.br/rvz/article/view/1479

Issue

Section

Review Articles

Most read articles by the same author(s)

1 2 > >>