Articular cartilage, and pathogenesis and treatment of the osteoarthritis

Authors

  • Pablo Eduardo Ocampo
  • Viviana Helena Vallejo
  • Sheila Canavese Rahal

DOI:

https://doi.org/10.35172/rvz.2019.v26.425

Keywords:

joint, pain, disease

Abstract

Osteoarthritis is characterized by pain and lameness, being considered a non-specific process, but rather a common sequel to various forms of joint lesion, with involvement of biological and mechanical factors. Therefore, the purpose of the present review is to discuss some aspects of articular cartilage (generalities and histogenesis), pathogenesiss of osteoarthritis, as well as some possibilities of intra-articular treatments for osteoarthritis. The articular cartilage, along with the synovial fluid, have an important mechanical role in diarthrodial joints. Chondrocytes are one of principal components of articular cartilage and are designated as highly differentiated cells with limited proliferation and migration capacity. The other component is the extracellular matrix composed of collagen type II, proteoglycans, non-collagenous proteins, glycoproteins, water and electrolytes. Osteoarthritis is classified as a non-inflammatory joint disease with multiple biochemical and biomechanical interactions. All components of the joint can be compromised, but cartilage is considered the target tissue. The osteoarthritis can be classified as primary, which occurs predominantly in elderly animals, and secondary, due to diseases that affect the joint and supporting structures. Among the intra-articular treatments for osteoarthritis are viscosupplementation with hyaluronic acid, the use of corticosteroids, and the combination of hyaluronic acid and corticosteroids. However, there are still several controversies regarding efficacy.

References

Sanderson RO, Beata C, Flipo R, Genevois J, Macias C, Tacke S, et al. Systematic review of the management of canine osteoarthritis. Vet Rec. 2009;164(14):418-24.

Maxie G. Jubb, Kennedy, Palmer’s pathology of domestic animals. Edinburgh: Elsevier Saunders; 2015. 3v.

Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin. 2013;39(1):1–19.

Cooper C, Dennison E, Edwards M, Litwic A. Epidemiology of osteoarthritis. Medicographia. 2013;35(2):145–51.

Fox SM. Chronic pain in small animal medicine. Boca Raton: CRC Press; 2009.

Souza MV. Osteoarthritis in horses – Part 2: a review of the intra- articular use of corticosteroids as a method of treatment. Braz Arch Biol Technol. 2016;59:e16150025.

McGeady T, Quinn P, Fitzpatrick E, Kilroy D, Ryan M, Lonergan P. Veterinary embryology. 2nd ed.Oxford: Blackwell Publishing; 2017.

Longobardi L, Li T, Tagliafierro L, Temple JD, Wilcockson HH, Ye P, et al. Synovial Joints: from development to homeostasis. Curr Osteoporos Rep. 2015;13(1):41–51.

Lanzer WL, Komenda G. Changes in articular cartilage after meniscectomy. Clin Orthop Relat Res [Internet]. 1990 [citado 15 Nov 2018];(252):41–8. Disponível em: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2406073

Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology, and repair. Cell Mol Life Sci. 2010;67(24):4197–211.

Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451.

Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech. 2004;37(5):595–604.

Carranza-Bencano A, García-Paino L, Armas Padrón JR, Cayuela Dominguez A. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthr Cartil. 2000;8(5):351–8.

Silva EF, Macagnan KL, Ferrúa CP, Severo RF, Demarco FF, Nedel F. Engenharia tecidual de cartilagem articular com ênfase em odontologia. RFO UPF. 2015;20(3):372–9.

Häuselmann H, Fernandes R, Mok S, Schmid T, Block J, Aydelotte M, et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994;107:17–27.

Borrelli J, Ricci WM. Acute effects of cartilage impact. Clin Orthop Relat Res. 2004;423:33–9.

Eyre DR, Wu JJ. Collagen structure and cartilage matrix integrity. J Rheumatol. 1995;43(Supp):82–5.

An YH, Marti KL. Handbook of histology methods for bone and cartilage. New York: Springer Science Business Media; 2003. 588 p.

Rezende MU, Hernandez AJ, Camanho GL, Amatuzzi MM. Cartilagem articular e osteoartrose. Acta Ortop Bras. 2000;8(2):100–4.

Bellamy N, Campbell J, Welch V, Gee TL, Bourne R, Wells GA. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2006(2):38–45.

Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development [Internet]. 2015 [citado 15 Nov 2018];142(5):817–31. Disponível em: http://dev.biologists.org/cgi/doi/10.1242/dev.105536

Decker R, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10.

Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209(1):11–27.

Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today. 2003;69(2):144–55.

Brunet L, McMahon J, McMahon A, Harland R. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.

Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.

Iwamoto M, Higuchi Y, Koyama E, Enomoto-Iwamoto M, Kurisu K, Yeh H, et al. Transcription factor ERG variants and functional diversification of chondrocytes during limb long bone development. J Cell Biol. 2000;150(1):27–39.

Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243(1):44–54.

Storm E, Huynh T, Copeland N, Jenkins N, Kingsley D, Lee S-J. Limb alterations in brachypodism mice due to mutations in a new member of the TGFB-superfamily. Nature [Internet]. 1994 [citado 30 Out 2018];368(6472):639. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/7509040

Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.

Oshin A, Stewart M. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol. 2007;20(3):151–8.

World Health Organization. Priority diseases and reasons for inclusion [Internet]. Geneva: WHO; 2013 [citado 10 Nov 2018]. Osteoarthritis: p. 1–3. Disponível em: http://www.who.int/medicines/areas/priority_medicines/Ch6_12Osteo.pdf

Goldring MB. Articular cartilage degradation in osteoarthritis. HSS J. 2012;8(1):7–9.

Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.

DeCamp CE, Johnston SA, Déjardin LM, Schaefer SL. Fractures: classification, diagnosis, and treatment. In: Piermattei DL, Flo GL, DeCamp CE. Handbook of small animal orthopedics and fracture repair. St. Louis: Saunders Elsevier; 2016. p. 25–152.

Kapoor M, Martel-pelletier J, Lajeunesse D, Pelletier J, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol [Internet]. 2011 [citado 13 Out 2018];7(1):33–42. Disponível em: http://dx.doi.org/10.1038/nrrheum.2010.196

Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;1–11. doi: 10.1155/2013/284873.

Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr Cartil. 2004;12:S31–3.

Rezende MU de, Gobbi RG. Tratamento medicamentoso da OA no joelho. Rev Bras Ortop [Internet]. 2009 [citado 26 Nov 2018];44(1):14–9. Disponível em: http://www.scielo.br/pdf/rbort/v44n1/v44n1a02.pdf

Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part I: Critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr Cartil. 2007;15(9):981–1000.

Watterson JR, Esdaile JM. Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg. 2000;8(5):277–84.

Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.

Goodrich LR, Nixon AJ. Medical treatment of osteoarthritis in the horse: a review. Vet J. 2006;171(1):51–69.

Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65(3):395–413.

Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthr Cartil. 2006;14(12):1237–47.

Goldberg V, Goldberg L. Intra-articular hyaluronans: the treatment of knee pain in osteoarthritis. J Pain Res [Internet]. 2010 [citado 26 Nov 2018];3:51–6. Disponível em: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3004653&tool=pmcentrez&rendertype=abstract

Torrance GW, Raynauld JP, Walker V, Goldsmith CH, Bellamy N, Band PA, et al. A prospective, randomized, pragmatic, health outcomes trial evaluating the incorporation of hylan G-F 20 into the treatment paradigm for patients with knee osteoarthritis (Part 2 of 2): Economic results. Osteoarthr Cartil. 2002;10(7):518–27.

Campos GC. Efeito da associação da triancinolona à viscossuplementação do joelho [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2013.

Rezende MU, Campos GC. Viscosupplementation. Rev Bras Ortop. 2012;47(2):160–4.

Pekarek B, Osher L, Buck S, Bowen M. Intra-articular corticosteroid injections: a critical literature review with up-to-date findings. Foot. 2011;21(2):66–70.

Zulian F, Martini G, Gobber D, Agosto C, Gigante C, Zacchello F. Comparison of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in oligoarticular juvenile idiopathic arthritis. Rheumatology. 2003;42(10):1254–9.

Nüesch E, Trelle S, Reichenbach S, Rutjes AWS, Tschannen B, Altman DG, et al. Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ. 2010;341:c3515.

McIlwraith CW. The use of intra-articular corticosteroids in the horse: what is known on a scientific basis? Equine Vet J. 2010;42(6):563–71.

Jüni P, Hari R, Rutjes AWS, Fischer R, Silletta MG, Reichenbach S, et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. CD005328. doi: 10.1002/14651858.CD005328.pub3.

Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev [Internet]. 2006 [citado 26 Nov 2018];(2):CD005328. Disponível em: http://doi.wiley.com/10.1002/14651858.CD005328.pub2

Syed HM, Green L, Bianski B, Jobe CM, Wongworawat MD. Bupivacaine and triamcinolone may be toxic to human chondrocytes. Clin Orthop Relat Res. 2011;469(10):2941–7.

McIlwraith CW, Frisbie DD, Kawcak CE. The horse as a model of naturally occurring osteoarthritis. Bone Jt Res [Internet]. 2012 [citado 26 Nov 2018];1(11):297–309. Disponível em: http://www.bjr.boneandjoint.org.uk/content/1/11/297%5Cnhttp://www.bjr.boneandjoint.org.uk/content/1/11/297.full.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23610661

Zhang Z, Wei X, Gao J, Zhao Y, Zhao Y, Guo L, et al. Intra-articular injection of cross-linked hyaluronic acid-dexamethasone hydrogel attenuates osteoarthritis: an experimental study in a rat model of osteoarthritis. Int J Mol Sci. 2016;17(4):411. doi: 10.3390/ijms17040411.

Euppayo T, Siengdee P, Buddhachat K, Pradit W, Chomdej S, Ongchai S, et al. In vitro effects of triamcinolone acetonide and in combination with hyaluronan on canine normal and spontaneous osteoarthritis articular cartilage. In Vitro Cell Dev Biol Anim [Internet]. 2016 [citado 26 Nov 2018];52(7):723–35. Disponível em: http://dx.doi.org/10.1007/s11626-016-0022-4

Published

2019-11-14

How to Cite

1.
Ocampo PE, Vallejo VH, Canavese Rahal S. Articular cartilage, and pathogenesis and treatment of the osteoarthritis. RVZ [Internet]. 2019 Nov. 14 [cited 2024 Jul. 22];26:1-12. Available from: https://rvz.emnuvens.com.br/rvz/article/view/425

Issue

Section

Review Articles