Cartílago articular, patogénesis y tratamiento de la osteoartritis
DOI:
https://doi.org/10.35172/rvz.2019.v26.425Palabras clave:
articulación, dolor, enfermedadResumen
La osteoartritis se caracteriza por dolor e claudicación, considerándose como un proceso no especifico, y si, una secuela común a varias formas de lesión articular, involucrando factores biológicos e mecánicos. De esta forma, el objetivo de la presente revisión es mencionar algunos aspectos del cartílago articular (generalidades, histogénesis), patogénesis de la osteoartritis, así como algunas posibilidades de tratamientos intra-articulares para la osteoartritis. El cartílago articular, junto con el líquido sinovial, tienen un papel mecánico importante en las articulaciones diartrodiales. Los condrocitos están entre los principales componentes del cartílago articular y son fijados como células altamente diferenciadas con capacidad limitada de proliferación y migración. El otro componente es la matriz extracelular constituida de colágeno tipo II, proteoglicanos, proteínas no colagenosas, glicoproteínas, agua y electrólitos. La osteoartritis es clasificada como una enfermedad articular no inflamatoria, con múltiples interacciones bioquímicas y biomecánicas. Todos los componentes de la articulación pueden ser comprometidos, sin embargo, el cartílago articular es considerado el tejido de interés. La afección puede ser clasificada como primaria, que ocurre predominantemente en animales de edad avanzada, y secundaria, debido a enfermedades que afectan la articulación y las estructuras de soporte. Entre los tratamientos intra-articulares para la osteoartritis esta la viscosuplementación con ácido hialurônico, el uso de corticosteroides, e la combinación de ácido hialurônico e corticosteroides. Sin embargo, hay aun varias controversias en cuanto la eficacia
Citas
Sanderson RO, Beata C, Flipo R, Genevois J, Macias C, Tacke S, et al. Systematic review of the management of canine osteoarthritis. Vet Rec. 2009;164(14):418-24.
Maxie G. Jubb, Kennedy, Palmer’s pathology of domestic animals. Edinburgh: Elsevier Saunders; 2015. 3v.
Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin. 2013;39(1):1–19.
Cooper C, Dennison E, Edwards M, Litwic A. Epidemiology of osteoarthritis. Medicographia. 2013;35(2):145–51.
Fox SM. Chronic pain in small animal medicine. Boca Raton: CRC Press; 2009.
Souza MV. Osteoarthritis in horses – Part 2: a review of the intra- articular use of corticosteroids as a method of treatment. Braz Arch Biol Technol. 2016;59:e16150025.
McGeady T, Quinn P, Fitzpatrick E, Kilroy D, Ryan M, Lonergan P. Veterinary embryology. 2nd ed.Oxford: Blackwell Publishing; 2017.
Longobardi L, Li T, Tagliafierro L, Temple JD, Wilcockson HH, Ye P, et al. Synovial Joints: from development to homeostasis. Curr Osteoporos Rep. 2015;13(1):41–51.
Lanzer WL, Komenda G. Changes in articular cartilage after meniscectomy. Clin Orthop Relat Res [Internet]. 1990 [citado 15 Nov 2018];(252):41–8. Disponível em: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=2406073
Umlauf D, Frank S, Pap T, Bertrand J. Cartilage biology, pathology, and repair. Cell Mol Life Sci. 2010;67(24):4197–211.
Sanchez-Adams J, Leddy HA, McNulty AL, O’Conor CJ, Guilak F. The mechanobiology of articular cartilage: bearing the burden of osteoarthritis. Curr Rheumatol Rep. 2014;16(10):451.
Kisiday JD, Jin M, DiMicco MA, Kurz B, Grodzinsky AJ. Effects of dynamic compressive loading on chondrocyte biosynthesis in self-assembling peptide scaffolds. J Biomech. 2004;37(5):595–604.
Carranza-Bencano A, García-Paino L, Armas Padrón JR, Cayuela Dominguez A. Neochondrogenesis in repair of full-thickness articular cartilage defects using free autogenous periosteal grafts in the rabbit. A follow-up in six months. Osteoarthr Cartil. 2000;8(5):351–8.
Silva EF, Macagnan KL, Ferrúa CP, Severo RF, Demarco FF, Nedel F. Engenharia tecidual de cartilagem articular com ênfase em odontologia. RFO UPF. 2015;20(3):372–9.
Häuselmann H, Fernandes R, Mok S, Schmid T, Block J, Aydelotte M, et al. Phenotypic stability of bovine articular chondrocytes after long-term culture in alginate beads. J Cell Sci. 1994;107:17–27.
Borrelli J, Ricci WM. Acute effects of cartilage impact. Clin Orthop Relat Res. 2004;423:33–9.
Eyre DR, Wu JJ. Collagen structure and cartilage matrix integrity. J Rheumatol. 1995;43(Supp):82–5.
An YH, Marti KL. Handbook of histology methods for bone and cartilage. New York: Springer Science Business Media; 2003. 588 p.
Rezende MU, Hernandez AJ, Camanho GL, Amatuzzi MM. Cartilagem articular e osteoartrose. Acta Ortop Bras. 2000;8(2):100–4.
Bellamy N, Campbell J, Welch V, Gee TL, Bourne R, Wells GA. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2006(2):38–45.
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development [Internet]. 2015 [citado 15 Nov 2018];142(5):817–31. Disponível em: http://dev.biologists.org/cgi/doi/10.1242/dev.105536
Decker R, Koyama E, Pacifici M. Genesis and morphogenesis of limb synovial joints and articular cartilage. Matrix Biol. 2014;39:5–10.
Storm EE, Kingsley DM. GDF5 coordinates bone and joint formation during digit development. Dev Biol. 1999;209(1):11–27.
Archer CW, Dowthwaite GP, Francis-West P. Development of synovial joints. Birth Defects Res C Embryo Today. 2003;69(2):144–55.
Brunet L, McMahon J, McMahon A, Harland R. Noggin, cartilage morphogenesis, and joint formation in the mammalian skeleton. Science. 1998;280(5368):1455–7.
Hartmann C, Tabin CJ. Wnt-14 plays a pivotal role in inducing synovial joint formation in the developing appendicular skeleton. Cell. 2001;104(3):341–51.
Iwamoto M, Higuchi Y, Koyama E, Enomoto-Iwamoto M, Kurisu K, Yeh H, et al. Transcription factor ERG variants and functional diversification of chondrocytes during limb long bone development. J Cell Biol. 2000;150(1):27–39.
Lizarraga G, Lichtler A, Upholt WB, Kosher RA. Studies on the role of Cux1 in regulation of the onset of joint formation in the developing limb. Dev Biol. 2002;243(1):44–54.
Storm E, Huynh T, Copeland N, Jenkins N, Kingsley D, Lee S-J. Limb alterations in brachypodism mice due to mutations in a new member of the TGFB-superfamily. Nature [Internet]. 1994 [citado 30 Out 2018];368(6472):639. Disponível em: http://www.ncbi.nlm.nih.gov/pubmed/7509040
Pacifici M, Koyama E, Iwamoto M. Mechanisms of synovial joint and articular cartilage formation: Recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today. 2005;75(3):237–48.
Oshin A, Stewart M. The role of bone morphogenetic proteins in articular cartilage development, homeostasis and repair. Vet Comp Orthop Traumatol. 2007;20(3):151–8.
World Health Organization. Priority diseases and reasons for inclusion [Internet]. Geneva: WHO; 2013 [citado 10 Nov 2018]. Osteoarthritis: p. 1–3. Disponível em: http://www.who.int/medicines/areas/priority_medicines/Ch6_12Osteo.pdf
Goldring MB. Articular cartilage degradation in osteoarthritis. HSS J. 2012;8(1):7–9.
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011;23(5):471–8.
DeCamp CE, Johnston SA, Déjardin LM, Schaefer SL. Fractures: classification, diagnosis, and treatment. In: Piermattei DL, Flo GL, DeCamp CE. Handbook of small animal orthopedics and fracture repair. St. Louis: Saunders Elsevier; 2016. p. 25–152.
Kapoor M, Martel-pelletier J, Lajeunesse D, Pelletier J, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol [Internet]. 2011 [citado 13 Out 2018];7(1):33–42. Disponível em: http://dx.doi.org/10.1038/nrrheum.2010.196
Maldonado M, Nam J. The role of changes in extracellular matrix of cartilage in the presence of inflammation on the pathology of osteoarthritis. Biomed Res Int. 2013;1–11. doi: 10.1155/2013/284873.
Martel-Pelletier J. Pathophysiology of osteoarthritis. Osteoarthr Cartil. 2004;12:S31–3.
Rezende MU de, Gobbi RG. Tratamento medicamentoso da OA no joelho. Rev Bras Ortop [Internet]. 2009 [citado 26 Nov 2018];44(1):14–9. Disponível em: http://www.scielo.br/pdf/rbort/v44n1/v44n1a02.pdf
Zhang W, Moskowitz RW, Nuki G, Abramson S, Altman RD, Arden N, et al. OARSI recommendations for the management of hip and knee osteoarthritis, Part I: Critical appraisal of existing treatment guidelines and systematic review of current research evidence. Osteoarthr Cartil. 2007;15(9):981–1000.
Watterson JR, Esdaile JM. Viscosupplementation: therapeutic mechanisms and clinical potential in osteoarthritis of the knee. J Am Acad Orthop Surg. 2000;8(5):277–84.
Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett. 2007;29(1):17–25.
Goodrich LR, Nixon AJ. Medical treatment of osteoarthritis in the horse: a review. Vet J. 2006;171(1):51–69.
Bastow ER, Byers S, Golub SB, Clarkin CE, Pitsillides AA, Fosang AJ. Hyaluronan synthesis and degradation in cartilage and bone. Cell Mol Life Sci. 2008;65(3):395–413.
Wang CT, Lin YT, Chiang BL, Lin YH, Hou SM. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthr Cartil. 2006;14(12):1237–47.
Goldberg V, Goldberg L. Intra-articular hyaluronans: the treatment of knee pain in osteoarthritis. J Pain Res [Internet]. 2010 [citado 26 Nov 2018];3:51–6. Disponível em: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3004653&tool=pmcentrez&rendertype=abstract
Torrance GW, Raynauld JP, Walker V, Goldsmith CH, Bellamy N, Band PA, et al. A prospective, randomized, pragmatic, health outcomes trial evaluating the incorporation of hylan G-F 20 into the treatment paradigm for patients with knee osteoarthritis (Part 2 of 2): Economic results. Osteoarthr Cartil. 2002;10(7):518–27.
Campos GC. Efeito da associação da triancinolona à viscossuplementação do joelho [tese]. São Paulo: Faculdade de Medicina, Universidade de São Paulo; 2013.
Rezende MU, Campos GC. Viscosupplementation. Rev Bras Ortop. 2012;47(2):160–4.
Pekarek B, Osher L, Buck S, Bowen M. Intra-articular corticosteroid injections: a critical literature review with up-to-date findings. Foot. 2011;21(2):66–70.
Zulian F, Martini G, Gobber D, Agosto C, Gigante C, Zacchello F. Comparison of intra-articular triamcinolone hexacetonide and triamcinolone acetonide in oligoarticular juvenile idiopathic arthritis. Rheumatology. 2003;42(10):1254–9.
Nüesch E, Trelle S, Reichenbach S, Rutjes AWS, Tschannen B, Altman DG, et al. Small study effects in meta-analyses of osteoarthritis trials: meta-epidemiological study. BMJ. 2010;341:c3515.
McIlwraith CW. The use of intra-articular corticosteroids in the horse: what is known on a scientific basis? Equine Vet J. 2010;42(6):563–71.
Jüni P, Hari R, Rutjes AWS, Fischer R, Silletta MG, Reichenbach S, et al. Intra-articular corticosteroid for knee osteoarthritis. Cochrane Database Syst Rev. CD005328. doi: 10.1002/14651858.CD005328.pub3.
Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Intraarticular corticosteroid for treatment of osteoarthritis of the knee. Cochrane Database Syst Rev [Internet]. 2006 [citado 26 Nov 2018];(2):CD005328. Disponível em: http://doi.wiley.com/10.1002/14651858.CD005328.pub2
Syed HM, Green L, Bianski B, Jobe CM, Wongworawat MD. Bupivacaine and triamcinolone may be toxic to human chondrocytes. Clin Orthop Relat Res. 2011;469(10):2941–7.
McIlwraith CW, Frisbie DD, Kawcak CE. The horse as a model of naturally occurring osteoarthritis. Bone Jt Res [Internet]. 2012 [citado 26 Nov 2018];1(11):297–309. Disponível em: http://www.bjr.boneandjoint.org.uk/content/1/11/297%5Cnhttp://www.bjr.boneandjoint.org.uk/content/1/11/297.full.pdf%5Cnhttp://www.ncbi.nlm.nih.gov/pubmed/23610661
Zhang Z, Wei X, Gao J, Zhao Y, Zhao Y, Guo L, et al. Intra-articular injection of cross-linked hyaluronic acid-dexamethasone hydrogel attenuates osteoarthritis: an experimental study in a rat model of osteoarthritis. Int J Mol Sci. 2016;17(4):411. doi: 10.3390/ijms17040411.
Euppayo T, Siengdee P, Buddhachat K, Pradit W, Chomdej S, Ongchai S, et al. In vitro effects of triamcinolone acetonide and in combination with hyaluronan on canine normal and spontaneous osteoarthritis articular cartilage. In Vitro Cell Dev Biol Anim [Internet]. 2016 [citado 26 Nov 2018];52(7):723–35. Disponível em: http://dx.doi.org/10.1007/s11626-016-0022-4
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.