Metabolic syndrome: relationship between obesity, insulin resistance and systemic hypertension in small animals

Authors

  • Paula Nassar de Marchi
  • Priscylla Tatiana Chalfun Guimarães-Okamoto
  • Alessandra Melchert
  • José Francisco Antunes Ribeiro
  • Thiago Hideky Yamauti dos Santos
  • Luiz Henrique de Araújo Machado

Keywords:

cats, cholesterol, dogs, endocrinopathy, triglycerides

Abstract

The present review aims to define the metabolic syndrome and the action of fat on insulin
resistance and hypertension in small animals (dogs and cats). Metabolic syndrome is
considered a set of risk factors that predispose individuals to the development of insulin
resistance and hypertension, which can lead to endocrine disease, as diabetes mellitus type 2
and cardiovascular disease. It consists of obesity, hypertriglyceridemia, hypercholesterolemia,
hypertension and slight increase or in the upper limit of fasting serum glucose. The adipose
tissue functions as an important endocrine organ, secreting factors that contribute to increased
blood glucose levels, decreased insulin action and increased blood pressure in the body.
Treatment of the syndrome is mainly based on physical activity and dieting. Although it is
often diagnosed in Medicine, there are still doubts about its existence and pathophysiological
mechanisms in Veterinary Medicine, so further studies should be conducted in the area.

References

Han TS, Lean ME. Metabolic Syndrome. Medicine. 2006; 34:12:536-542.

Abraham NG, Brunner EJ, Eriksson JW, Robertson RP. Metabolic syndrome. Ann N Y Acad Sci. 2007; 1113:256-275.

Opie LH. Metabolic Syndrome. Circulation. 2007; 115:e32-e35.

Radin MJ, Sharkey LC, Holycross BJ. Adipokines: a review of biological and analytical principles and an update in dogs, cats, and horses. Vet Clin Path. 2009; 38:136-156.

Zoran DL. Obesity in Dogs and Cats: A Metabolic and Endocrine Disorder. Vet Clin North Am Small Anim Pract. 2010; 40:221-239.

Hanley AJ, Karter AJ, Williams K, Festa A, D’Agostino Jr RB, Wagenknecht LE, et al. Prediction of type 2 diabetes mellitus with alternative definitions of the metabolic syndrome: the Insulin Resistance Atherosclerosis Study. Circulation. 2005; 112:3713-3721.

Luna RL. Síndrome Metabólica. Arq Bras Cardiol. 2007; 88:5:e124-e126.

Hollenbeck C, Reaven GM. Variations in insulin stimulated glucose uptake in healthy individuals with normal glucose tolerance. J Clin Endocrinol Metab. 1987; 64:1169-1173.

Reaven GM. Banting lecture 1988: role of insulin resistance in human disease. Diabetes. 1988; 37:1595-1607.

Güçlü F, Ozmen B, Hekimsoy Z, Kirmaz C. Effects of a statin group drug, pravastatin, on the insulin resistance in patients with metabolic syndrome. Biomed Pharmacother. 2004; 58:614-618.

Jager J, Grémeaux T, Cormont M, Marchand-Brustel Y, Tanti JF. Interleukin-1β-Induced Insulin Resistance in Adipocytes through Down-Regulation of Insulin Receptor Substrate-1 Expression. Endocrinology. 2007; 148:1:241-251.

Giestas A, Palma I, Ramos MH. Sistema Renina Angiotensina e sua modulação farmacológica. Acta Med Port. 2010; 23:4:677-688.

Engeli, S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, et al. The adipose tissue renin-angiotensinaldosterone system: role in the metabolic syndrome. Int J Biochem Cell Biol. 2003; 35:807-825.

Carvalho MHC, Colaço AL, Fortes ZB. Citocinas, Disfunção Endotelial e Resistência à Insulina. Arq Bras Endocrinol Metab. 2006; 50:2:304-312.

Goodfriend TL, Egan BM, Kelley DE. Plasma aldosterone, plasma lipoproteins, obesity and insulin resistance in humans. Prostaglandins, Leukot Essent Fatty Acids. 1999; 60:401-405.

Egan BM, Greene EL, Goodfriend TL. Insulin Resistance and Cardiovascular Disease. Am J Hypertens. 2001; 14:16:116S-125S.

Bülow J, Madsen J, Højgaard L. Reversibility of the effects on local circulation of high lipid concentrations in blood. Scand J Clin Lab Invest. 1990; 50:291-296.

Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesity – related insulin resistance. Physiol Behav. 2008; 94:206-218.

Appleton DJ, Rand JS, Sunvold GD. Plasma leptin concentrations are independently associated with insulin sensitivity in lean and overweight cats. J Feline Med Surg. 2002; 4:83-93.

Ishioka K, Hosoya K, Kitagawa H, Shibata H, Honjoh T, Kimura K. Plasma leptin concentration in dogs:effects of body condition score, age, gender, and breeds. Res Vet Sci. 2007; 82:11-15.

Moller DE. Potential role of TNF alpha in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 2000; 11:212-217.

Juge-Aubry CE, Henrichot E, Meier CA. Adipose tissue: a regulator of inflammation. Best Pract Res Clin Endocrinol Metab. 2005; 19:547-566.

Gayet C, Bailhache E, Dumon H, Martin L, Siliart B, Nguyen P. Insulin resistance and changes in plasma concentrations of TNFa, IGF1, and NEFA in dogs during weight gain and obesity. J Anim Physiol Anim Nutr. 2004; 88:157-165.

Helisch A. Arteriogenesis: the development and growth of collateral arteries. Microcirculation. 2003; 10:83-97.

Russel JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc Pathol. 2006; 15:318-330.

Published

2016-06-01

How to Cite

1.
Nassar de Marchi P, Chalfun Guimarães-Okamoto PT, Melchert A, Antunes Ribeiro JF, Hideky Yamauti dos Santos T, de Araújo Machado LH. Metabolic syndrome: relationship between obesity, insulin resistance and systemic hypertension in small animals. RVZ [Internet]. 2016 Jun. 1 [cited 2024 May 15];23(2):184-91. Available from: https://rvz.emnuvens.com.br/rvz/article/view/639

Issue

Section

Review Articles

Most read articles by the same author(s)