BETA-GLUCANASES AND XYLANASES IN NON-RUMINANT NUTRITION

Authors

  • Bárbara Domingues Franzini Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Stéfane Alves Sampaio Instituto Federal de Educação, Ciência e Tecnologia Goiano https://orcid.org/0000-0002-1302-2001
  • Hemylla Sousa Santos Barros Instituto Federal de Educação, Ciência e Tecnologia Goiano https://orcid.org/0000-0001-5735-0739
  • Fernanda Xavier de Castro Santana Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Lorrayne Moraes de Paulo Universidade Federal de Goiás
  • Alison Batista Vieira Silva Gouveia Universidade Federal de Goiás
  • Fabiana Ramos dos Santos Instituto Federal de Educação, Ciência e Tecnologia Goiano
  • Cibele Silva Minafra Instituto Federal de Educação, Ciência e Tecnologia Goiano https://orcid.org/0000-0002-4286-2982

DOI:

https://doi.org/10.35172/rvz.2022.v29.771

Keywords:

Beta-glucan, Fibers, Non-starch polysaccharide, Poultry, Xylan

Abstract

The pursuit for cost-benefit in poultry farming involves understanding how to improve animal performance through feeding while reducing costs. In view of the growing monetary increase in feed raw material, several researches are focused on new energy sources derived from plants, which contain significant amounts of fiber and act as anti-nutritional factors, interfering with the zootechnical performance of birds. The main components of fiber, beta glucans and xylans, can be broken down and better utilized when using exogenous enzymes called carbohydrases, with beta glucanase and xylase being the respective enzymes that lyse these components. It is therefore necessary to better understand the mode of action of each enzyme, as well as the nutritive source of alternative food bases. This work aims to address and review the two main sources of fiber, beta glucans and xylans, and their respective enzymes, beta glucanase and xylase.

References

Bedford MR, Partridge G. Enzymes in Farm Animal Nutrition [Internet]. Cabi; 2010 [citado 13 de fevereiro de 2022]. 336 p. Disponível em: https://www.cabi.org/bookshop/book/9781845936747/ DOI: https://doi.org/10.1079/9781845936747.0000

Rezende PM. Associação de xilanase, protease e dois níveis de fitase em dietas de frangos. Association of xylanase, protease and two levels of phytase in chicken diets [Internet]. 8 de setembro de 2020 [citado 17 de fevereiro de 2022]; Disponível em: http://repositorio.bc.ufg.br/tede/handle/tede/10861

Delmaschio I. Enzimas na alimentação de animais monogástricos-revisão de literatura. Revista Científica de Medicina Veterinária [Internet]. 2018;2(UNORP). Disponível em: http://sivap.unorp.br:8083/ojs/index.php/revmedvetunorp/article/view/31/21

Silva DM da, Rodrigues DR, Gouveia ABVS, Mesquita SA, Santos FR dos, Minafra CS. Carboidrases em rações de frangos de corte. PUBVET. 1o de novembro de 2016;10:795–872. https://doi.org/10.22256/pubvet.v10n11.861-872 DOI: https://doi.org/10.22256/pubvet.v10n11.861-872

Generoso RAR, Gomes PC, Rostagno HS, Albino LFT, Barreto SL de T, Brumano G. Composição química e energética de alguns alimentos para frangos de corte em duas idades. R Bras Zootec. julho de 2008;37:1251–6. https://doi.org/10.1590/S1516-35982008000700016 DOI: https://doi.org/10.1590/S1516-35982008000700016

Sabchuk TT, Bastos TS, Komarcheuski AS, Maiorka A, Félix AP, Oliveira SG. Uso do gérmen de milho desengordurado, com e sem adição de um complexo enzimático, em dietas para cães. Arq Bras Med Vet Zootec. 15 de fevereiro de 2021;73:239–46. https://doi.org/10.1590/1678-4162-11719 DOI: https://doi.org/10.1590/1678-4162-11719

Conte AJ, Teixeira AS, Fialho ET, Schoulten NA, Bertechini AG. Efeito da fitase e xilanase sobre o desempenho e as características ósseas de frangos de corte alimentados com dietas contendo farelo de arroz. R Bras Zootec. outubro de 2003;32:1147–56. https://doi.org/10.1590/S1516-35982003000500015 DOI: https://doi.org/10.1590/S1516-35982003000500015

Morgan NK, Gomes GA, Kim JC. Comparing the efficacy of stimbiotic and a combination of xylanase and beta-glucanase, in broilers fed wheat-barley based diets with high or low AME. Poult Sci. outubro de 2021;100(10):101383. https://doi.org/10.1016/j.psj.2021.101383 DOI: https://doi.org/10.1016/j.psj.2021.101383

Pomin VH, Mourão PA de S. Carboidratos: de adoçantes a medicamentos [Internet]. Ciência Hoje. [citado 17 de fevereiro de 2022]. Disponível em: https://cienciahoje.org.br/artigo/carboidratos-de-adocantes-a-medicamentos/

Evers AD, O’Brien L, Blakeney AB. Cereal structure and composition. Aust J Agric Res. 1999;50(5):629–50. https://doi.org/10.1071/ar98158 DOI: https://doi.org/10.1071/AR98158

Van Soest PJ. Nutritional Ecology of the Ruminant. Cornell University Press; 1994. 498 p. DOI: https://doi.org/10.7591/9781501732355

Goulart FR, Adoriam TJ, Mombach PI, Da Silva LP. Importância da fibra alimentar na nutrição de animais não ruminantes. Rev ci inov. 23 de maio de 2016;1(1):141–54. https://doi.org/10.26669/2448-4091104 DOI: https://doi.org/10.26669/2448-4091104

Mertens DR. Creating a System for Meeting the Fiber Requirements of Dairy Cows. Journal of Dairy Science. 1o de julho de 1997;80(7):1463–81. https://doi.org/10.3168/jds.S0022-0302(97)76075-2 DOI: https://doi.org/10.3168/jds.S0022-0302(97)76075-2

McDonald P. Animal Nutrition. Prentice Hall/Pearson; 2011. 692 p.

Van Soest PJ, Robertson JB, Lewis BA. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science. 1o de outubro de 1991;74(10):3583–97. https://doi.org/10.3168/jds.S0022-0302(91)78551-2 DOI: https://doi.org/10.3168/jds.S0022-0302(91)78551-2

Moss GP, Smith P a. S, Tavernier D. Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995). Pure and Applied Chemistry. 1o de janeiro de 1995;67(8–9):1307–75. https://doi.org/10.1351/pac199567081307 DOI: https://doi.org/10.1351/pac199567081307

Fortes BDA. Utilização de carboidrases em rações de frangos de corte. 2011;29.Disponível em: https://files.cercomp.ufg.br/weby/up/67/o/semi2011_Bruno_Duarte_1c.pdf

Tavernari F de C, Carvalho TA, Assis AP de, Lima HJD. Polissacarídeo não-amiláceo solúvel na dieta de suínos e aves [Internet]. NutriTime. 2008 [citado 17 de fevereiro de 2022]. Disponível em: https://www.nutritime.com.br/site/artigo-068-polissacarideo-nao-amilaceo-soluvel-na-dieta-de-suinos-e-aves/

Warpechowski MB. Efeito da fibra insolúvel da dieta sobre a passagem no trato gastrintestinal de matrizes machos pesados intactos, cecectomizados e fistulados no íleo terminal. 1996;128. https://docs.ufpr.br/~marson/Warpechowski_1996_Dissserta_Color.pdf

Choct M. Enzyme for the feed industry: Past, present and future. Worlds Poultry Science Journal - WORLD POULTRY SCI J. 1o de março de 2006;62:5–15. https://doi.org/10.1079/WPS200480 DOI: https://doi.org/10.1079/WPS200480

Sticklen MB. Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet. junho de 2008;9(6):433–43. https://doi.org/10.1038/nrg2336 DOI: https://doi.org/10.1038/nrg2336

Han B, Baruah K, Cox E, Vanrompay D, Bossier P. Frontiers | Structure-Functional Activity Relationship of β-Glucans From the Perspective of Immunomodulation: A Mini-Review | Immunology. Front Immunol [Internet]. 2020 [citado 13 de fevereiro de 2022];11. Disponível em: https://www.frontiersin.org/articles/10.3389/fimmu.2020.00658/full DOI: https://doi.org/10.3389/fimmu.2020.00658

Nörnberg FR. Farelo de aveia e concentrados de ß-glucana nativo e oxidado: efeito sobre parâmetros endócrinos e metabólicos em ratos submetidos a uma dieta hipercolesterolêmica. Oat bran concentrates and ß-glucan native and oxidized: effect on endocrine and metabolic parameters in rats subjected to a hypercholesterolemic diet [Internet]. 20 de março de 2014 [citado 17 de fevereiro de 2022]; Disponível em: http://repositorio.ufpel.edu.br:8080/handle/ri/2704

Mellerowicz EJ, Gorshkova TA. Tensional stress generation in gelatinous fibres: a review and possible mechanism based on cell-wall structure and composition. J Exp Bot. janeiro de 2012;63(2):551–65. https://doi.org/10.1093/jxb/err339 DOI: https://doi.org/10.1093/jxb/err339

Silva SS, Carvalho RR, Fonseca JLC, Garcia RB. Extração e caracterização de xilanas de sabugos de milho. Polímeros. junho de 1998;8:25–33. https://doi.org/10.1590/S0104-14281998000200005 DOI: https://doi.org/10.1590/S0104-14281998000200005

Choct M, Dersjant-Li Y, Mcleish J, Peisker M. Soy Oligosaccharides and Soluble Non-starch Polysaccharides: A Review of Digestion, Nutritive and Anti-nutritive Effects in Pigs and Poultry. Asian-Australasian Journal of Animal Sciences. 1o de outubro de 2010;23. https://doi.org/10.5713/ajas.2010.90222 DOI: https://doi.org/10.5713/ajas.2010.90222

Plácido VP. Enzimas exógenas utilizadas na dieta de aves: Revisão bibliográfica. 2019;34 [citado 17 de fevereiro de 2022]. Disponível em: https://repositorio.ufsc.br/bitstream/handle/123456789/199581/TCC%20Vania%20Pacagnan%20Placido.pdf?sequence=1&isAllowed=y

Fischer G, Maier JC, Rutz F, Bermudez VL. Desempenho de Frangos de Corte Alimentados com Dietas à Base de Milho e Farelo de Soja, com ou sem Adição de Enzimas. R Bras Zootec. janeiro de 2002;31(1 suppl):402–10. https://doi.org/10.1590/S1516-35982002000200015 DOI: https://doi.org/10.1590/S1516-35982002000200015

Vasconcellos D de OF Carlos. enzimas exógenas frango de corte [Internet]. Engormix. 2011 [citado 17 de fevereiro de 2022]. Disponível em: https://pt.engormix.com/avicultura/artigos/enzimas-exogenas-frango-de-corte-t37031.htm

Bauermeister A, Rezende MI, Giese EC, Dekker RFH, Barbosa A de M. Fungal beta-1,3-Glucanases: production and biotechnological applications. Semina: Exact and Technological Sciences. 15 de dezembro de 2010;31(2):75–86. https://doi.org/10.5433/1679-0375.2010v31n2p75 DOI: https://doi.org/10.5433/1679-0375.2010v31n2p75

K.Edison L, Sugathan S, Pradeep N. Microbial Beta Glucanase in Agriculture. In 2018. https://doi.org/10.1201/9781351248914-2 DOI: https://doi.org/10.1201/9781351248914-2

Karunaratne ND, Classen HL, Ames NP, Bedford MR, Newkirk RW. Effects of diet hulless barley and beta-glucanase levels on ileal digesta soluble beta-glucan molecular weight and carbohydrate fermentation in laying hens. Poultry Science. 18 de janeiro de 2022;101735. https://doi.org/10.1016/j.psj.2022.101735 DOI: https://doi.org/10.1016/j.psj.2022.101735

Karunaratne ND, Newkirk RW, Ames NP, Van Kessel AG, Bedford MR, Classen HL. Hulless barley and β-glucanase affect ileal digesta soluble β-glucan molecular weight and digestive tract characteristics of coccidiosis-vaccinated broilers. Animal Nutrition. 1o de setembro de 2021;7(3):595–608. https://doi.org/10.1016/j.aninu.2020.09.006 DOI: https://doi.org/10.1016/j.aninu.2020.09.006

Macambira GM, Rabello CBV, Lopes C da C, dos Santos MJB, Ribeiro AG, Oliveira HS de H, et al. Carboidrases exógenas e a saúde intestinal de aves. RSD. 2021;10. https://doi,org/10.33448/rsd-v10i7.16774 DOI: https://doi.org/10.33448/rsd-v10i7.16774

Khadem A, Lourenço M, Delezie E, Maertens L, Goderis A, Mombaerts R, et al. Does release of encapsulated nutrients have an important role in the efficacy of xylanase in broilers? Poult Sci. maio de 2016;95(5):1066–76. https://doi.org/10.3382/ps/pew002 DOI: https://doi.org/10.3382/ps/pew002

Coughlan MP, Hazlewood GP. beta-1,4-D-xylan-degrading enzyme systems: biochemistry, molecular biology and applications. Biotechnol Appl Biochem. junho de 1993;17(3):259–89.

Biely P. Microbial xylanolytic systems. Trends in Biotechnology. 1o de novembro de 1985;3(11):286–90. https://doi.org/10.1016/0167-7799(85)90004-6 DOI: https://doi.org/10.1016/0167-7799(85)90004-6

Machado N de JB. Xilanase e probiótico em dietas para frangos de corte. Xylanase and probiotic in broiler diets [Internet]. 11 de outubro de 2019 [citado 16 de fevereiro de 2022]; Disponível em: https://tede.ufrrj.br/handle/jspui/5209

Lima GS. Adição de xilanase em diferentes níveis de energia metabolizável em rações para frangos de corte [Internet]. Universidade Federal da Paraíba; 2015 [citado 16 de fevereiro de 2022]. Disponível em: https://repositorio.ufpb.br

Barbosa NAA, Bonato MA, Sakomura NK, Dourado LRB, Fernandes JBK, Kawauchi IM. Digestibilidade ileal de frangos de corte alimentados com dietas suplementadas com enzimas exógenas. Comunicata Scientiae. 30 de dezembro de 2014;5(4):361–9. https://doi.org/10.14295/cs.v5i4.460

Conte AJ, Teixeira AS, Bertechini AG, Fialho ET. Efeito da fitase e xilanase sobre a energia metabolizável do farelo de arroz integral em frangos de corte. Ciência e Agrotecnologia. 2002;26.

Wu YB, Ravindran V, Thomas DG, Birtles MJ, Hendriks WH. Influence of phytase and xylanase, individually or in combination, on performance, apparent metabolisable energy, digestive tract measurements and gut morphology in broilers fed wheat-based diets containing adequate level of phosphorus. Br Poult Sci. fevereiro de 2004;45(1):76–84. https://doi.org/10.1080/00071660410001668897 DOI: https://doi.org/10.1080/00071660410001668897

Maesschalck C, Eeckhaut V, Maertens L, De Lange L, Marchal L, Nezer C, et al. Effects of Xylo-Oligosaccharides on Broiler Chicken Performance and Microbiota. Appl Environ Microbiol. 1o de setembro de 2015;81(17):5880–8. https://doi.org/10.1128/AEM.01616-15 DOI: https://doi.org/10.1128/AEM.01616-15

Gehring CK, Bedford MR, Dozier WA. Extra-phosphoric effects of phytase with and without xylanase in corn-soybean meal-based diets fed to broilers. Poult Sci. abril de 2013;92(4):979–91. https://doi.org/10.3382/ps.2012-02769 DOI: https://doi.org/10.3382/ps.2012-02769

Schramm VG, Durau JF, Barrilli LNE, Sorbara JOB, Cowieson AJ, Félix AP, et al. Interaction between xylanase and phytase on the digestibility of corn and a corn/soy diet for broiler chickens. Poultry Science. 1o de maio de 2017;96(5):1204–11. https://doi.org/10.3382/ps/pew356 DOI: https://doi.org/10.3382/ps/pew356

Boerboom G, van Kempen T, Navarro-Villa A, Pérez-Bonilla A. Unraveling the cause of white striping in broilers using metabolomics. Poult Sci. 1o de novembro de 2018;97(11):3977–86. https://doi.org/10.3382/ps/pey266 DOI: https://doi.org/10.3382/ps/pey266

Campestrini E. UTILIZAÇÃO DE ENZIMAS NA ALIMENTAÇÃO ANIMAL. 2005;14.

Twomey LN, Pluske JR, Rowe JB, Choct M, Brown W, McConnell MF, et al. The effects of increasing levels of soluble non-starch polysaccharides and inclusion of feed enzymes in dog diets on faecal quality and digestibility. Animal Feed Science and Technology. 25 de agosto de 2003;108(1):71–82. https://doi.org/10.1016/S0377-8401(03)00161-5 DOI: https://doi.org/10.1016/S0377-8401(03)00161-5

Sá FC [UNESP]. Efeito da suplementação de enzimas sobre o processamento e digestibilidade de dietas extrusadas para cães contendo farelo de trigo. Aleph. 21 de fevereiro de 2011;xii, 45 f. : il., tabs. Disponíbel em: https://repositorio.unesp.br/handle/11449/89239

Published

2022-08-02

How to Cite

1.
Domingues Franzini B, Alves Sampaio S, Sousa Santos Barros H, Xavier de Castro Santana F, Moraes de Paulo L, Batista Vieira Silva Gouveia A, Ramos dos Santos F, Silva Minafra C. BETA-GLUCANASES AND XYLANASES IN NON-RUMINANT NUTRITION. RVZ [Internet]. 2022 Aug. 2 [cited 2024 Dec. 4];29:1-13. Available from: https://rvz.emnuvens.com.br/rvz/article/view/771

Issue

Section

Review Articles

Most read articles by the same author(s)