TECHNOLOGICAL PROSPECTION IN PATENT BASES OF TECHNIQUES AND PRODUCTS APPLIED TO OBTAINING MONOSEX IN FISH
DOI:
https://doi.org/10.35172/rvz.2022.v29.891Keywords:
Monosex; Pisciculture; Patents; Technological prospecting.Abstract
In 2018, aquaculture produced 82.1 million tons of aquatic animals, with fish accounting for the largest share. This production is constantly increasing in the world, especially in developing countries, ensuring income and nutritional security. Knowing its importance, researchers and producers aim to improve and apply technologies such as the use of monosex fish on farms. These technologies are protected through patent documents to guarantee the exclusivity of commercial exploitation and are made available for searches in national and international databases. Thus, the objective of this work was to carry out the technological prospection of products and processes that aim to obtain the monosex of fish. A search was carried out in the main national and international patent databases, such as INPI, Espacenet, LATIPAT, and Patent scope. The search was performed using keywords in Portuguese, English, and Spanish, followed by analysis and filtering of documents with the adopted inclusion and exclusion criteria. With the patents obtained, the data were tabulated and proceeded to analysis. It was identified that China was the holder of 67.9% of the patents and the beginning of the registration of documents in 1992, with greater growth observed in the last 20 years. According to the international classification of patents, the technological groups that were found the most were in the areas of human and chemical needs (sections A and C). The main depositors were distributed among research institutes and companies. Most of the patents did not specify fish families for the application of the technology, those that did were mainly for Chichilidae and Bagridae. 10 techniques for monosex were protected, and more than half of the patents contained, at some stage of the process, the use of endocrine manipulators to obtain the desired result. This work also made it possible to verify that China remains the largest producer of patents in fish farming, following its great potential in aquaculture. We can conclude that the technological prospection study proved to be effective for understanding the trajectory in which the state of the art of fish farming follows when it comes to obtaining monosex. It was noticed that, even though Brazil is a relevant country in psychculture, the protection of this type of technology is still deficient in the country, and it is necessary to create mitigating measures to circumvent this problem.
References
FAO. 2020. The State of World Fisheries and Aquaculture 2020. Sustainability in action. Rome. https://doi.org/10.4060/ca9229en. DOI: https://doi.org/10.4060/ca9229en
Brasil. Ministério da Agricultura Pecuária e Abastecimento (Mapa). Secretaria de Aquicultura e Pesca (org.). BOLETIM DA PISCICULTURA EM ÁGUAS DA UNIÃO: 2018 - 2019. Brasilia-Df: Ministério da Agricultura Pecuária e Abastecimento; 2020.
PEIXE BR. Anuário Brasileiro da Piscicultura 2020. Brasil.
Singh AK. Introduction of modern endocrine techniques for the production of monosex population of fishes. Gen. Comp. Endocrinol., [s.l.], v. 181, p.146-155, jan. 2013. Elsevier BV. https://doi.org/10.1016/j.ygcen.2012.08.027 DOI: https://doi.org/10.1016/j.ygcen.2012.08.027
Meurer F, Hayashi C, Boscolo WR, Schamber, CR. Fontes proteicas suplementadas com aminoácidos e minerais para tilápia do Nilo durante a reversão sexual. Rev. Bras. Zootec., Viçosa, v. 34, n. 1, p. 1-6, 2005. https://doi.org/10.1590/S1516-35982005000100001 DOI: https://doi.org/10.1590/S1516-35982005000100001
EL-Greisy ZA, EL-Gamal AE. Monosex production of tilapia, Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. Egypt. J. Aquat. Res., [s.l.], v. 38, n. 1, p.59-66, 2012. Elsevier BV. https://doi.org/10.1016/j.ejar.2012.08.005 DOI: https://doi.org/10.1016/j.ejar.2012.08.005
Beardmore JA, Mair JC, Lewis RI. Monosex male production in finfish as exemplified by tilapia: applications, problems, and prospects. Aquaculture, [s. l], v. 197, p. 283-301, 01 jun. 2001. https://doi.org/10.1016/S0044-8486(01)00590-7 DOI: https://doi.org/10.1016/B978-0-444-50913-0.50015-1
Hoga CA, Almeida FL, Reyes FGR. A review on the use of hormones in fish farming: Analytical methods to determine their residues. Cyta J. Food, v. 16, n. 1, 679–691, 2018. https://doi.org /10.1080/19476337.2018.1475423 DOI: https://doi.org/10.1080/19476337.2018.1475423
Cesar MP, Murgas LDS, Araujo, Drummond CD. Métodos para obtenção de população monosexo na psicultura. Boletim agropecuário, Universidade Federal de Lavras, n° 69, p. 1-27, 2005.
Luckenbach JA, Fairgrive WT, Hayman ES. Establishment of monosex female production of sablefish (Anoplopoma fimbria) through direct and indirect sex control. Aquaculture, [s.l.], v. 479, p.285-296, out. 2017. Elsevier BV. https://doi.org/10.1016/j.aquaculture.2017.05.037 DOI: https://doi.org/10.1016/j.aquaculture.2017.05.037
Silva WVR, Russo SL. ASPECTOS GERAIS DO SISTEMA DE PROPRIEDADE INTELECTUAL NO BRASIL. In: Russo SL, et al. (org.). PROPRIEDADE INTELECTUAL, TECNOLOGIAS E INOVAÇÃO. Aracaju: Associação Acadêmica de Propriedade Intelectual, 2018. p. 93-107. http://api.org.br/wp-content/uploads/2018/01/Livro-PITI-pdf.pdf
Oliveira DC, Oliveira JV, Costa VO, Garcia LG, Martins SR. Bibliographic Review of Models of Prospecting Technology Innovation in Conditions of Uncertainty and Unpredictability: an exploratory study. IPEDR, [s. l], v. 85, p. 95-111, 2015. http://www.ipedr.com/vol85/012-R003.pdf
Florêncio MNS, Miranda DPSL, Santos AC, Dias CT, Russo SL, Oliveira Junior AM. Prospecção tecnológica: um estudo sobre os depósitos de patentes em nanobiotecnologia. Cad. Prospec., Salvador, v. 10, n. 2, p. 315-326, abr. 2017. https://doi.org/10.9771/cp.v10i2.21453. DOI: https://doi.org/10.9771/cp.v10i2.21453
Rodrigues T, Braghini Junior A. Technological prospecting in the production of charcoal: a patent study. Renew. Sust. Energ. Rev, [s. l], v. 11, p. 170-183, set. 2019. https://doi.org/10.1016/j.rser.2019.04.080 DOI: https://doi.org/10.1016/j.rser.2019.04.080
Alba CF, Suguimoto HH, Morioka LRI. Prospecção tecnológica de patentes sobre compostos bioativos de microalgas. Braz. J. Dev. Curitiba, v. 7, n. 8, p. 81223-81236, ago. 2021. https://brazilianjournals.com/index.php/BRJD/article/view/34530/pdf DOI: https://doi.org/10.34117/bjdv7n8-371
ShareAmerica. EUA lideram o mundo na proteção da propriedade intelectual [Internet]. [s. l]: ShareAmerica; 2020 [citado 06 dez. 2021]. Disponível em: https://share.america.gov/pt-br/eua-lideram-o-mundo-na-protecao-da-propriedade-intelectual/.
Silva JC, Hora, HR, Carvalho RA. Prospecção tecnológica para a comunicação imediata entre surdos e ouvintes. Revista Sinalizar, [S.L.], v. 4, 15 out. 2019. Universidade Federal de Goias. http://dx.doi.org/10.5216/rs.v4.57913. DOI: https://doi.org/10.5216/rs.v4.57913
Rodrigues L. Com timidez do setor privado, universidades lideram patentes no Brasil [internet]. Rio de Janeiro: AgênciaBrasil; 2021 [citado 11 dez. 2021]. Disponível em: https://agenciabrasil.ebc.com.br/geral/noticia/2021-07/com-timidez-do-setor-privado-universidades-lideram-patentes-no-brasil.
Brasil. Classificação de patentes [internet]. Gov.Br. Ministério da Economia (org.); 2021[08 dez. 2021]. Disponível em: https://www.gov.br/inpi/pt-br/servicos/patentes/classificacao-de-patentes.
Reis VR, Almeida FL, Piferrer F. Produção de populações monossexo em peixes. Rev. Bras. Reprod. Anim, Belo Horizonte, v. 40, n. 1, p. 22-28, jan/mar. 2016. http://www.cbra.org.br/pages/publicacoes/rbra/v40/n1/p22-28%20(RB607).pdf
Lu B, Liang G, Xu M, Chenxu W, Tan D, Tao W, Sun L, Wang D. Production of all male amelanotic red tilapia by combining MAS-GMT and tyrb mutation. Aquaculture, [S.L.], v. 546, p. 737327, jan. 2022. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2021.737327. DOI: https://doi.org/10.1016/j.aquaculture.2021.737327
Kocour M, Linhart O, Gela D, Rodina M. Growth Performance of All-Female and Mixed-Sex Common Carp Cyprinus Carpio L. Populations in the Central Europe Climatic Conditions. J. World Aquac. Soc., [S.L.], v. 36, n. 1, p. 103-113, 3 abr. 2007. Wiley. http://dx.doi.org/10.1111/j.1749-7345.2005.tb00136.x. DOI: https://doi.org/10.1111/j.1749-7345.2005.tb00136.x
David CJ, Pandiam TJ., Cadaveric sperm induces intergeneric androgenesis in the fish, Hemigrammus caudovittatus. Theriogenology. Abril, 2006, 1;65(6):1048-1070. doi: 10.1016/j.theriogenology.2005.07.014. DOI: https://doi.org/10.1016/j.theriogenology.2005.07.014
Morishima K, Fujimoto T, Sato M, Kawae A, Zhao Y, Yamaha E, Arai K. Cold-shock eliminates female nucleus in fertilized eggs to induce androgenesis in the loach (Misgurnus anguillicaudatus), a teleost fish. BMC Biotechnol., [S.L.], v. 11, n. 1, p. 1-4, 29 nov. 2011. http://dx.doi.org/10.1186/1472-6750-11-116. DOI: https://doi.org/10.1186/1472-6750-11-116
Das S. Biotechnological Exploitation of Marine Animals. Anim. Biotechnol., [S.L.], p. 541-562, 2014. Elsevier. http://dx.doi.org/10.1016/b978-0-12-416002-6.00029-8. DOI: https://doi.org/10.1016/B978-0-12-416002-6.00029-8
Silva GF. Melhoramento genético de tilápia-do-nilo. In: Silva GF, Maciel LM, Dalmass MV, Gonçalves MT. TILÁPIA-DO-NILO: criação e cultivo em viveiros no estado do paraná. Curitiba: Gia, 2015. Cap. 8. p. 1-290. https://gia.org.br/portal/wp-content/uploads/2017/12/Livro-pronto.pdf
Abo-Al-Ela HG. Hormones and fish monosex farming: a spotlight on immunity. Fish Shellfish Immunol., [S.L.], v. 72, p. 23-30, jan. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.fsi.2017.10.038. DOI: https://doi.org/10.1016/j.fsi.2017.10.038
Leeds TD, Weber GM. Effects of triploidy on genetic gains in a rainbow trout (Oncorhynchus mykiss) population selectively bred for diploid growth performance. Aquaculture, [S.L.], v. 505, p. 481-487, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2019.03.003. DOI: https://doi.org/10.1016/j.aquaculture.2019.03.003
Nascimento NF, Monzoni OS, Pereira-Santos M, Niedzielski, D, Senhorini JA, Silva LA, Nakaghi LSO, Yasui GS. The first case of induced gynogenesis in neotropical fishes using the yellowtail tetra (Astyanax altiparanae) as a model organism. Aquaculture, [S.L.], v. 514, p. 734432, jan. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2019.734432. DOI: https://doi.org/10.1016/j.aquaculture.2019.734432
Mtaki K, Limbu S, Mmochi AJ, Mtolera M. Hybrids production as a potential method to control prolific breeding in tilapia and adaptation to aquaculture climate-induced drought. Aquac Fish. [S.L.], 6 pag., abr. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.aaf.2021.04.005. DOI: https://doi.org/10.1016/j.aaf.2021.04.005
Zhang H, Liu SJ, Zhang C, Tao M, Peng LY, You CP, Xiao J, Zhou Y, Zhou GJ, Luo KK, Liu Y. Induced Gynogenesis in Grass Carp (Ctenopharyngodon idellus) Using Irradiated Sperm of Allotetraploid Hybrids. Mar. Biotechnol., [S.L.], v. 13, n. 5, p. 1017-1026, jan. 2011. Springer Science and Business Media LLC. http://dx.doi.org/10.1007/s10126-011-9365-8. DOI: https://doi.org/10.1007/s10126-011-9365-8
Gao FX, Lu WJ, Wang Y, Zhang QY, Zhang YB, Mou CY, Li Z, Zhang XJ, Liu CW, Zhou L, Gui JF. Differential expression and functional diversification of diverse immunoglobulin domain-containing protein (DICP) family in three gynogenetic clones of gibel carp. Dev. Comp. Immunol., [S.L.], v. 84, p. 396-407, jul. 2018. Elsevier BV. http://dx.doi.org/10.1016/j.dci.2018.03.013. DOI: https://doi.org/10.1016/j.dci.2018.03.013
Hu F, Fan J, Luo K, Zhou Y, Wu C, Luo L, Wang S, Tao M, Zhang C, Chen B, Ma M, Liu S. Comparative analyses of reproductive characteristics of functional sex reversal male gynogenetic red crucian carp and ordinary male red crucian carp. Aquaculture, [S.L.], v. 511, p. 634199, set. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2019.06.013. DOI: https://doi.org/10.1016/j.aquaculture.2019.06.013
Rougeot C, Ngingo JV, Gillet L, Vanderplasschen A, Mérlad C. Gynogenesis induction and sex determination in the Eurasian perch, Perca fluviatilis. Aquaculture, [S.L.], v. 243, n. 1-4, p. 411-415, jan. 2005. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2004.11.004. DOI: https://doi.org/10.1016/j.aquaculture.2004.11.004
Rahman MR, Sarder MRI, Nishat AA, Islam R. Induction of diploid gynogenesis by heat shock treatment in silver barb (Barbonymus gonionotus). Aquaculture, [S.L.], v. 505, p. 297-305, abr. 2019. Elsevier BV. http://dx.doi.org/10.1016/j.aquaculture.2019.02.015. DOI: https://doi.org/10.1016/j.aquaculture.2019.02.015
Manan H, Bakar NHA, Lyana NA, Amin-safwan A. A review of gynogenesis manipulation in aquatic animals. Aquac. Fish., [S.L.], v., n., p. 1-6, dez. 2020. Elsevier BV. http://dx.doi.org/10.1016/j.aaf.2020.11.006. DOI: https://doi.org/10.1016/j.aaf.2020.11.006
Li S, Zhou Y, Yang C, Fan S, Huang L, Zhou T, Wang Q, Zhao R, Tang C, Tao M, Liu S. Comparative analyses of hypothalamus transcriptomes reveal fertility-, growth-, and immune-related genes and signal pathways in different ploidy cyprinid fish. Genomics, [S.L.], v. 113, n. 2, p. 595-605, mar. 2021. Elsevier BV. http://dx.doi.org/10.1016/j.ygeno.2021.01.004. DOI: https://doi.org/10.1016/j.ygeno.2021.01.004
El-Sayed AM, Aziz MFAA, Elsayed HAG. Effects of phytoestrogens on sex reversal of Nile tilapia (Oreochromis niloticus) larvae fed diets treated with 17α-Methyltestosterone. Aquaculture, [s.l.], v. 360-361, p.58-63, set. 2012. http://dx.doi.org/10.1016/j.aquicultura.2012.07.010 DOI: https://doi.org/10.1016/j.aquaculture.2012.07.010
Downloads
Published
How to Cite
Issue
Section
License
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.