CRITERIA FOR SELECTION OF LYTIC BACTERIOPHAGE FOR USE IN MEDICAL FIELD (SETTING): PRELIMINARY DATA

Authors

  • Guilherme Augusto Marietto Gonçalves
  • Bianca Yuri Borges Suehiro
  • Luis Felipe Zuccolo Paschoal Costa
  • José Carlos de Figueiredo Pantoja
  • Raphael Lucio Andreatti Filho

Keywords:

Bacteriófagos, Salmonella, controle biológico, biotecnologia

Abstract

This article analyzed, in vitro, the behavior of 62 bacteriophages samples lytic for Salmonella
Enteritidis. The lytic potential was assessed by analyzing following parameters: proliferation,
halo size in gel diffusion, superficial halo size and virulence degree. Proliferation degree of
samples was determined by quantifying the amount of plaque forming unit (PFU) using gel
diffusion technique. To determine UFP, minor dilution with measurable halos was considered.
Lytic spectrum in the gel column was measured with an acrylic precision ruler. For to
superficial halo size and virulence degree, the “spot-on-lawn” technique was employed. We
observed that lytic activity spectrum, halo size in gel diffusion and proliferation are factors
independent of virulence, but prolific samples shown higher spectrum of lytic activity.
Prolific samples that present a high degree of virulence demonstrate in vitro a good potential
for medical application.

References

Bier O. Microbiologia e Imunologia. 23º. ed. São Paulo: Melhoramentos; 1984.

Dublanchet A, Fruciano E. Brève histoire de la phagothérapie. Méd. Mal. Infect. 2008; 38:415-420.

Mayr A.; Guerreiro MG.. Virologia Veterinária. 2ª ed. Porto Alegre: Sulina; 1981.

Rohwer F, Edwards R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 2002; 184:4529-4535.

Barrow PA, Soothill JS. Bacteriophage therapy and prophylaxis: rediscovery and renewed assessment of potential. Trends Microbiol. 1997; 5:268-271.

Skurnik M, Strauch E. Phage therapy: Facts and fiction. Int. J. Med. Microbiol. 2006; 296:5-14.

Mattey M, Spencer J. Bacteriophage therapy - cooked goose or Phoenix rising? Curr. Opin. Biotechnol. 2008; 9:608-612.

Matsuzaki S, Rashel M, Uchiyama J, Sakurai S, Ujihara T, Kuroda M, Ikeuchi M, Tani T, Fujieda M, Wakiguchi H, Imai S. Bacteriophage therapy: a revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 2005; 11:211-219.

Andreatti Filho RL, Higgins JP, Higgins SE, Gaona G, Wolfenden AD, Tellez G, Hargis BM. Ability of bacteriophages isolated from different sources to reduce Salmonella enterica serovar Enteritidis in vitro and in vivo. Poultry Sci. 2007; 86:1904-1909.

Marietto-Gonçalves GA, Lima ET, Donato TC, Rocha TS, Cisneros Álvarez LE, Sequeira JL, Andreatti Filho RL. Eradication of Salmonella Typhimurium in broiler chicks by combined use of P22 bacteriophage and probiotic. Microbiol. Res. 2011; 3:4-9.

Fiorentin L, Vieira ND, Barioni Júnior W. Oral treatment with bacteriophages reduces the concentration of Salmonella Enteritidis PT4 in caecal contents of broilers. Avian Pathol. . 2005; 34:258-263.

Atterbury RJ, Van Bergen MAP, Ortiz F, Lovell MA, Harris JA, De Boer A, Wagenaar JA, Allen VM, Barrow PA. Bacteriophage therapy to reduce Salmonella colonization of broiler chickens. Appl. Environ. Microbiol. 2007; 73:4543-4549.

Borie C, Albala I, Sánchez P, Sánchez ML, Ramírez S, Navarro C, Morales MA, Retamales AJ, Robeson J. Bacteriophage treatment reduces Salmonella colonization of infected chickens. Avian Dis. 2008; 52:64-67.

Borie C, Sánchez ML, Navarro C, Ramírez S, Morales MA, Retamales AJ, Robeson J. Aerosol spray treatment with bacteriophages and competitive exclusion reduces Salmonella enteritidis infection in chickens. Avian Dis. 2009; 53: 250-254.

Toro H, Price SB, McKee AS, Hoerr FJ, Krehling J, Perdue M, Bauermeister L. Use of bacteriophages in combination with competitive exclusion to reduce Salmonella from infected chickens. Avian Dis. 2005; 49:118-124.

Marietto Gonçalves GA; Andreatti Filho RL. Fagoterapia: uma opção de controle biológico para a salmonelose aviária. Rev. Edu. Cont. Med. Vet. Zoot. CRMV-SP. 2012; 10:6-13.

Goode D, Allen VM, Barrow PA. Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl. Environ. Microbiol. 2003; 69:5032-5036.

Higgins JP, Higgins SE, Guenther KL, Huff W, Donoghue AM, Donoghue DJ, Hargis BM. Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poultry Sci. 2005; 84:1141-1145.

Bielke LR, Higgins SE, Donoghue AM, Donoghue DJ, Hargis BM, Tellez G. Use of wide-host-range bacteriophages to reduce Salmonella on poultry products. Int. J. Poultry Sci. 2007; 6:754-757.

Bull JJ, Pfennig DW, Wang I-N. Genetic detail, optimization and phage life histories. Trends Ecol. Evol. 2004; 19:76-82.

Wang IN, Dykhuizen DE, Slobodkin LB. The evolution of phage lysis timing. Evolution. Ecol. 1996; 10:545-558.

Abedon ST, Herschler TD, Stopar D.. Bacteriophage latent-period evolution as a response to resource availability. Appl. Environ. Microbiol. 2001; 67: 4233–4241.

Published

2022-04-19

How to Cite

1.
Gonçalves GAM, Suehiro BYB, Costa LFZP, Pantoja JC de F, Filho RLA. CRITERIA FOR SELECTION OF LYTIC BACTERIOPHAGE FOR USE IN MEDICAL FIELD (SETTING): PRELIMINARY DATA. RVZ [Internet]. 2022 Apr. 19 [cited 2024 May 11];22(1):72-8. Available from: https://rvz.emnuvens.com.br/rvz/article/view/956

Issue

Section

Original Articles

Most read articles by the same author(s)