EFECTOS TÓXICOS DE PESTICIDAS COMERCIALES Y BOTÁNICOS EN LOS PARÁMETROS DE COMPORTAMIENTO DEL PEZ CEBRA (DANIO RERIO)

Autores/as

DOI:

https://doi.org/10.35172/rvz.2023.v30.1118

Palabras clave:

Toxicidad, Aceite esencial, Comportamiento animal, Actividad locomotora

Resumen

RESUMEN

El objetivo de este trabajo fue evaluar el efecto tóxico de plaguicidas comerciales, aceites esenciales y sus mezclas, que mostraron actividad plaguicida contra Plutella xylostella, sobre parámetros de comportamiento, actividad locomotora y conductas sociales del pez cebra (Danio rerio). Los animales adultos fueron expuestos a pesticidas comerciales deltametrina, azadiractina, clorantraniliprol, aceites esenciales Eugenia caryophyllus, Melaleuca alternifolia, Citrus aurantium var. dulcis, Citrus aurantiifolia, Eucalyptus globulus, Melaleuca leucadendra y mezclas de los mismos. Se evaluaron parámetros de mortalidad y comportamiento en exposición crónica por el método de escaneo instantáneo, actividad locomotora y comportamiento social, según los siguientes parámetros: distancia recorrida, velocidad promedio y tiempo de inactividad. Hubo 100% de mortalidad en animales expuestos a deltametrina, que es el pesticida más tóxico. Se observaron cambios de comportamiento (p < 0,05) en el forrajeo, reposo y ataque a los diferentes plaguicidas. No se observaron cambios en la actividad locomotora y el comportamiento social. Se puede concluir que la exposición a pesticidas comerciales, aceites esenciales y sus mezclas fue tóxica para el pez cebra. La exposición a bajas concentraciones de estos pesticidas comprometió la supervivencia y el comportamiento del pez cebra. Incluso el biopesticida se considera seguro, puede traer riesgos al medio acuático y sus efectos tóxicos deben ser estudiados para determinar concentraciones seguras para su uso en la actividad agrícola.

Citas

Wang L, Walter GH, Furlong MJ. Temperature, deltamethrin-resistance status and performance measures of Plutella xylostella: complex responses of insects to environmental variables. Ecol Entomol. 2020;45(2):345–54. https://doi.org/10.1111/een.12805. DOI: https://doi.org/10.1111/een.12805

Jaleel W, Saeedc S, Naqqash MN, Siale MU, Alif M, Zakag SM, et al. Effects of temperature on baseline susceptibility and stability of insecticide resistance against Plutella xylostella (Lepidoptera: Plutellidae) in the absence of selection pressure. Saudi J Biol Sci. 2019. https://doi.org/10.1016/j.sjbs.2019.03.004. DOI: https://doi.org/10.1016/j.sjbs.2019.03.004

Passos DA, Silva-Torres CSA, Siqueira HAA. Behavioral response and adaptive cost in resistant and susceptible Plutella xylostella to Chlorantraniliprole. Bull Entomol Res. 2019;110(1):96–105. https://doi.org/10.1017/S0007485319000300. DOI: https://doi.org/10.1017/S0007485319000300

Feng R, Isman MB. Selection for resistance to azadirachtin in the green peach aphid, Myzus persicae. Experientia. 1995;51(8):831–3. https://doi.org/10.1007/BF01922438. DOI: https://doi.org/10.1007/BF01922438

Jijie R, Solcan G, Nicoara M, Micu D, Strungaru SA. Antagonistic effects in zebrafish (Danio rerio) behavior and oxidative stress induced by toxic metals and deltamethrin acute exposure. Science of the Total Environment. 2020;698:134299. https://doi.org/10.1016/j.scitotenv.2019.134299. DOI: https://doi.org/10.1016/j.scitotenv.2019.134299

Xie Y, Budd R, Teerlink J, Luo Y, Singhasemanon N. Assessing pesticide uses with potentials for down-the-drain transport to wastewater in California. Science of the Total Environment. 2021;773:145636. Available from: https://doi.org/10.1016/j.scitotenv.2021.145636. DOI: https://doi.org/10.1016/j.scitotenv.2021.145636

Ouedraogo AS, Zannou OM, Biguezoton AS, Patrick KY, Belem AMG, Farougou S, et al. Efficacy of two commercial synthetic pyrethroids (cypermethrin and deltamethrin) on Amblyomma variegatum and Rhipicephalus microplus strains of the south-western region of Burkina Faso. Trop Anim Health Prod . 2021;53(3):1–7. https://doi.org/10.1007/s11250-021-02849-2. DOI: https://doi.org/10.1007/s11250-021-02849-2

Strachan F, Kennedy CJ. The environmental fate and effects of anti-sea lice chemotherapeutants used in salmon aquaculture. Aquaculture. 2021;544:737079, jun. 2021. https://doi.org/10.1016/j.aquaculture.2021.737079. DOI: https://doi.org/10.1016/j.aquaculture.2021.737079

Seben D, Salbego J, da Silva EG, Gressler LT, Baldisserotto B, Marchesan E, et al. Acute Silver Catfish (Rhamdia quelen) Exposure to Chlorantraniliprole Insecticide. Bull Environ Contam Toxicol. 2021;(0123456789). https://doi.org/10.1007/s00128-021-03315-3. DOI: https://doi.org/10.1007/s00128-021-03315-3

Lahm GP, Stevenson TM, Selby TP, Freudenberger JH, Cordova D, Flexner L, et al. RynaxypyrTM: A new insecticidal anthranilic diamide that acts as a potent and selective ryanodine receptor activator. Bioorganic Med Chem Lett. 2007;17(22):6274–9. https://doi.org/10.1016/j.bmcl.2007.09.012. DOI: https://doi.org/10.1016/j.bmcl.2007.09.012

Liu T, Wang X, Chen D, Li Y, Wang F. Growth, reproduction and biochemical toxicity of chlorantraniliprole in soil on earthworms (Eisenia fetida). Ecotoxicol Environ Saf. 2018;150:18–25, dec. 2017. https://doi.org/10.1016/j.ecoenv.2017.12.010. DOI: https://doi.org/10.1016/j.ecoenv.2017.12.010

Korkmaz N, Örün İ. Effects of pesticide NeemAzal-T/S on thyroid, stress hormone and some cytokines levels in freshwater common carp, Cyprinus carpio L. Toxin Rev. 2021. https://doi.org/10.1080/15569543.2021.1895841. DOI: https://doi.org/10.1080/15569543.2021.1895841

Maranho LA, Botelho RG, Mitie Inafuku M, de L, Alves de Olinda R, Inácio de Sousa BA, et al. Testing the Neem biopesticide (Azadirachta indica A. Juss) for acute toxicity with danio rerio and for chronic toxicity with Daphnia magna. J Agric Sci Technol. 2014;16(1):105–11. https://jast.modares.ac.ir/article-23-6440-en.pdf.

Silva MMC da, Camara CAG da, Moraes MM de, Melo JPR de, Santosa RB dos, Neves RCS. Insecticidal and Acaricidal Activity of Essential Oils Rich in (E)-Nerolidol from Melaleuca leucadendra Occurring in the State of Pernambuco (Brazil) and Effects on Two Important Agricultural Pests. J Braz Chem Soc. 2020;31(4):813–20. http://dx.doi.org/10.21577/0103-5053.20190245. DOI: https://doi.org/10.21577/0103-5053.20190245

Micić D, Ostojić S, Pezo L, Blagojević S, Pavlić B, Zeković Z, et al. Essential oils of coriander and sage: Investigation of chemical profile, thermal properties and QSRR analysis. Ind Crops Prod. 2019;138. https://doi.org/10.1016/j.indcrop.2019.06.001. DOI: https://doi.org/10.1016/j.indcrop.2019.06.001

Raut JS, Karuppayil SM. A status review on the medicinal properties of essential oils. Ind Crops Prod . 2014;62:250–64, set. 2022. http://dx.doi.org/10.1016/j.indcrop.2014.05.055. DOI: https://doi.org/10.1016/j.indcrop.2014.05.055

Melo JPR DE. PRODUTOS FORMULADOS A BASE DE ÓLEOS ESSENCIAIS PARA O MANEJO DE POPULAÇÕES DE TRAÇA-DAS-CRUCÍFERAS Plutella xylostella (L.) (LEPIDOPTERA: PLUTELLIDAE) RESISTENTES AO INGREDIENTE ATIVO DELTAMETRINA [Tese] [Internet]. PPGEA UFRPE BR. 2017; http://ww2.ppgea.ufrpe.br/sites/default/files/testes-dissertacoes/joao_paulo_ramos_de_melo.pdf.

Barbas LAL, Torres MF, da Costa BMPA, Feitosa MJM, Maltez LC, Amado LL, et al. Eugenol induces body immobilization yet evoking an increased neuronal excitability in fish during short-term baths. Aquat Toxicol. 2021;231, nov. 2020. https://doi.org/10.1016/j.aquatox.2020.105734. DOI: https://doi.org/10.1016/j.aquatox.2020.105734

Audira G, Sampurna BP, Juniardi S, Liang ST, Lai YH, Hsiao C Der. A versatile setup for measuring multiple behavior endpoints in zebrafish. Inventions. 2018;3(4). https://doi.org/10.3390/inventions3040075. DOI: https://doi.org/10.3390/inventions3040075

Bailey J, Oliveri A, Levin ED. Zebrafish model systems for developmental neurobehavioral toxicology. Birth Defects Res Part C - Embryo Today Rev. 2013;99(1):14–23. https://doi.org/10.1002/bdrc.21027. DOI: https://doi.org/10.1002/bdrc.21027

Hawkey AB, Holloway Z, Dean C, Koburov R, Slotkin TA, Seidler FJ, et al. Neurobehavioral anomalies in zebrafish after sequential exposures to DDT and chlorpyrifos in adulthood: Do multiple exposures interact? Neurotoxicol Teratol. 2021;87:106985, sep. 2020. https://doi.org/10.1016/j.ntt.2021.106985. DOI: https://doi.org/10.1016/j.ntt.2021.106985

Huang Y, Zhang J, Han X, Huang T. The use of zebrafish (Danio rerio) behavioral responses in identifying sublethal exposures to deltamethrin. Int J Environ Res Public Health. 2014;11(4):3650–60. https://doi.org/10.3390/ijerph110403650. DOI: https://doi.org/10.3390/ijerph110403650

Zhu JJ, Xu YQ, He JH, Yu HP, Huang CJ, Gao JM, et al. Human cardiotoxic drugs delivered by soaking and microinjection induce cardiovascular toxicity in zebrafish. J Appl Toxicol. 2012;34(2):139–48. https://doi.org/10.1002/jat.2843. DOI: https://doi.org/10.1002/jat.2843

OECD. Test No. 236: Fish Embryo Acute Toxicity (FET) Test. OECD Guidelines for the Testing of Chemicals, Section 2. OECD; 2013. https://doi.org/10.1787/9789264203709-en. DOI: https://doi.org/10.1787/9789264203709-en

Silva MCG da, Silva JF da, Santos TP, Silva NPC da, Santos AR dos, Andrade ALC de, et al. The complexation of steroid hormones into cyclodextrin alters the toxic effects on the biological parameters of zebrafish (Danio rerio). Chemosphere. 2019;214:330-340. https://doi.org/10.1016/j.chemosphere.2018.09.116. DOI: https://doi.org/10.1016/j.chemosphere.2018.09.116

Bittencourt TQM, Santos AR, Silva MCG, Silva JF, Silva NPC, Silva WE, et al. Efeitos tóxicos de compostos de vanádio sobre os parâmetros biológicos de embriões e adultos de zebrafish (Danio rerio). Arq. Bras. Med. Vet. Zootec. 2018;70(6):1877–86. https://doi.org/10.1590/1678-4162-10009. DOI: https://doi.org/10.1590/1678-4162-10009

Souza CF, Baldissera MD, Silva L de L, Geihs MA, Baldisserotto B. Is monoterpene terpinen-4-ol the compound responsible for the anesthetic and antioxidant activity of Melaleuca alternifolia essential oil (tea tree oil) in silver catfish? Aquaculture . 2018;486:217–23, dec. 2017. https://doi.org/10.1016/j.aquaculture.2017.12.025. DOI: https://doi.org/10.1016/j.aquaculture.2017.12.025

Lopes JM, Souza C de F, Schindler B, Pinheiro CG, Salbego J, de Siqueira JC, et al. Essential oils from Citrus x aurantium and Citrus x latifolia (Rutaceae) have anesthetic activity and are effective in reducing ion loss in silver catfish (Rhamdia quelen). Neotrop Ichthyol. 2018;16(2):1–10. https://doi.org/10.1590/1982-0224-20170152. DOI: https://doi.org/10.1590/1982-0224-20170152

Bullangpoti V, Mujchariyakul W, Laksanavilat N, Junhirun P. Acute toxicity of essential oil compounds (thymol and 1,8-cineole) to insectivorous guppy, Poecilia reticulata Peters, 1859. Agric Nat Resour. 2018;52(2):190–4. https://doi.org/10.1016/j.anres.2018.06.011. DOI: https://doi.org/10.1016/j.anres.2018.06.011

Publicado

2023-05-29

Cómo citar

1.
Silva JF da, Vieira SM de M, Silva MCG da, Santos TP, Andrade ALC de, Bastos PE da S, Padilha RMO, Magnabosco AR dos S, Bittencourt TQ da M, Melo JPR de, Câmara CAG da, Cadena MRS, Cadena P. EFECTOS TÓXICOS DE PESTICIDAS COMERCIALES Y BOTÁNICOS EN LOS PARÁMETROS DE COMPORTAMIENTO DEL PEZ CEBRA (DANIO RERIO). RVZ [Internet]. 29 de mayo de 2023 [citado 20 de mayo de 2024];30. Disponible en: https://rvz.emnuvens.com.br/rvz/article/view/1118