Contenido lipídico, actividad mitocondrial y desarrollo embrionario temprano de ovocitos provenientes de vacas mestizas (bos taurus indicus)

Autores/as

  • Yoeli Mendez
  • Nohely Parra
  • Francisco Baez
  • Robert Valeris
  • Patricia Villamediana

DOI:

https://doi.org/10.35172/rvz.2018.v25.27

Palabras clave:

Calidad ovocitaria, contenido lipídico, predominancia fenotípica, Bos indicus, Bos taurus

Resumen

El objetivo de la presente investigación fue el de valorar el efecto de la predominancia fenotípica sobre el contenido lipídico como indicador de la calidad ovocitaria. Los COC’s fueron recuperados mediante aspiración folicular y sometidos a maduración in vitro (MIV), fecundación in vitro (FIV) y cultivo in vitro (CIV). Se determinó el contenido lipídico y actividad mitocondrial en ovocitos inmaduros y MIV. La tasa de maduración total se ubicó en 75%, con valores de 80,6% y 69,3% para ovocitos predominantemente B. indicus y predominantemente B. taurus, respectivamente. La tasa de fecundación total fue de 27,6%, para ovocitos predominantemente B. indicus y predominantemente B. taurus, esta fue de 26,1% y 29%, respectivamente. Se observó un total de embriones divididos de 52,1% y 58,9% tras 48 y 72 horas post inseminación (hpi), respectivamente. Por otro lado, para el grupo predominantemente B. indicus se apreció un 55,5% y 57,5% de embriones divididos  tras 48 y 72 hpi. Mientras que para el grupo predominantemente B. taurus se apreció un 52,1% y 58,9% de embriones divididos tras 48 y 72 hpi. Ovocitos inmaduros presentaron mayor número de gotas lipídicas pequeñas (p ‹0,0001), en contraste con los ovocitos MIV que presentaron mayor número de gotas lipídicas medianas y grandes (p < 0,0001). Ovocitos predominantemente B. indicus presentaron mayor número de gotas lipídicas pequeñas (p = 0,0005) y medianas (p = 0.005),  mientras que para las gotas lipídicas grandes no se apreciaron diferencias significativas. Ovocitos MIV presentaron mayor actividad mitocondrial que el grupo de ovocitos inmaduros (p ˂ 0,05), sin observarse efecto de la predominancia fenotípica sobre este parámetro. La valoración del contenido lipídico no resultó un factor predictivo de la calidad ovocitaria en hembras mestizas.

Biografía del autor/a

Yoeli Mendez

Técnico de Área Inversiones Porcinas Venezuela

Nohely Parra

Laboratorio de Citogenética, Departamento de Biología, Facultad Experimental de Ciencias. Universidad del Zulia

Francisco Baez

Laboratorio de Citogenética, Departamento de Biología, Facultad Experimental de Ciencias. Universidad del Zulia

Robert Valeris

 Universidad del Zulia, Facultad de Ciencias Veterinarias.

Patricia Villamediana

Laboratorio de Citogenética, Departamento de Biología, Facultad Experimental de Ciencias. Universidad del Zulia

Citas

1. Kim J, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen–thawed immature and in vitro matured bovine oocyte. Reproduction. 2001;122:131-8.
2. Ferguson E, Leese H. A potential role for triglyceride as an energy source during bovine oocyte maturation and early embryo development. Mol Reprod Dev. 2006;73:1195-201.
3. Aardema H, Vos P, Lolicato F, Roelen B, Knijn H, Vaandrager A, Helms J, Gadella B. Oleic acid prevents detrimental effects of saturated fatty acids on bovine oocyte developmental competence. Biol Reprod. 2011;85: 62-9.
4. Krisher R. The effect of oocyte quality on development. J Anim Sci. 2004;82:E14-23.
5. Boni R. Origins and effects of oocyte quality in cattle. Anim Reprod. 2012;9:333-40.
6. Leroy J, Vanholder T, Mateusen B, Christophe A, Opsomer A, de Kruif A, et al. Nonesterified fatty acids in follicular fluid of dairy cows and their effect on developmental capacity of bovine oocytes in vitro. Reproduction. 2005;130:485-95.
7. Igosheva N, Abramov A, Poston L, Eckert J, Fleming T, Duchen M, et al. Maternal dietinduced obesity alters mitochondrial activity and redox status in mouse oocyte and zygote. PLoS One. 2010;5:e10074.
8. Wu L, Dunning K, Yang X, Russell D, Lane M, Norman R, et al. High-fat diet causes lipotoxicity responses in cumulus–oocyte complexes and decreased fertilization rates. Endocrinology. 2010;151:5438-45.
9. Grindler N, Moley K. Maternal obesity, infertility and mitochondrial dysfunction: potential mechanisms emerging from mouse model systems. Mol Hum Reprod. 2013;19:486-94. 10. Leroy J, Genicot G, Donnay I, Van Soom A. Evaluation of the lipid content in bovine oocytes and embryos with nile red: a practical approach. Reprod Domest Anim.2005;40:76-8.
11. Aranguren-Méndez J, Yáñez L. Planifique los cruzamientos. In: González-Stagnaro C, Soto-Belloso E. Manual de ganadería doble propósito. Maracaibo: Ediciones Astro Data SA; 2005. p.119-24.
12. Báez F, Chávez A, Hernández H, Villamediana P. Evaluación de la capacidad de desarrollo in vitro de ovocitos bovinos provenientes de vacas con predominancia fenotípica Bos taurus y Bos indicus. Rev Cient. 2010;20(3):259-67.
13. Isea-Villasmil W, Aranguren-Méndez J. Clasificación fenotípica en vacas mestizas. In: González-Stagnaro C, Belloso ES. Manual de ganadería doble propósito. Maracaibo: Ediciones Astro Data SA; 2005. p.76-81.
14. Sudano M, Paschoal D, Rascado T, Lima J, Landim-Alvarenga F. The effect of fetal calf serum concentrations upon the in vitro Bos taurus indicus x Bos taurus taurus crossbred embryo production and the cytoplasmic lipid accumulation. Vet Zootec. 2011;18(1):123-34.
15. Popescu L, Gherghiceanu M, Hinescu M, Cretoiu D, Ceafalan L, Regalia T, et al. Insights into the interstitium of ventricular myocardium: interstitial Cajal-like cells (ICLC). J Cell Mol Med. 2006;10(2):429-58.
16. Ballard C, Looney C, Lindsey B, Pryor J, Lynn J, Bondioli K, et al. Comparing oocyte lipid content with circulant cholesterol and triglyceride levels of Bos taurus and Bos indicus donor cows. Reprod Fertil Dev. 2008;20:177.
17. Ordóñez-León E, Merchant H, Medrano A, Kjelland M, Romo S. Lipid droplet analysis using in vitro bovine oocytes and embryos. Reprod Domest Anim. 2014;49(2):306-14.
18. Hyttel P, Fair T, Callesen H, Greve T. Oocyte growth, capacitation and final maturation in cattle. Theriogenology. 1997;47(1):23-32.
19. Farese R, Walther T. Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 2009;139(5):855-60.
20. Yang H, Galea A, Sytnyk V, Crossley M. Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol. 2012;24(4):509-19.
21. Jeong W, Cho S, Lee H, Deb G, Lee Y, Kwon T, et al. Effect of cytoplasmic lipid content on in vitro developmental efficiency of bovine IVP embryos. Theriogenology. 2009;72(4):584-9.
22. Castaneda C, Kaye P, Pantaleon M, Phillips N, Norman S, Fry R, et al. Lipid content, active mitochondria and brilliant cresyl blue staining in bovine oocytes. Theriogenology. 2013;79(3):417-22.
23. Stojkovic M, Machado S, Stojkovic P, Zakhartchenko V, Hutzler P, Goncalves P, et al. Mitochondrial distribution and adenosine triphosphate content of bovine oocytes before and after in vitro maturation: correlation with morphological criteria and developmental capacity after in vitro fertilization and culture. Biol Reprod. 2001;64(3):904-9.
24. Nagano M, Katagiri S, Takahashi Y. ATP content and maturational/developmental ability of bovine oocytes with various cytoplasmic morphologies. Zygote. 2006;14(4):299-304.
25. Tarazona A, Rodríguez J, Restrepo L, Olivera-Ángel M. Mitochondrial activity, distribution and segregation in bovine oocytes and in embryos produced in vitro. Reprod Domest Anim. 2006;41(1):5-11.
26. Cerri R, Juchem S, Chebel R, Rutigliano H, Bruno R, Galvão K, et al. Effect of fat source differing in fatty acid profile on metabolic parameters, fertilization, and embryo quality in high-producing dairy cows. J Dairy Sci. 2009;92(4):1520-31.
27. Lopes A, Lane M, Thompson J. Oxygen consumption and ROS production are increased at the time of fertilization and cell cleavage in bovine zygotes. Hum Reprod. 2010;25(11):2762-73.
28. El Shourbagy S, Spikings E, Freitas M, John J. Mitochondria directly influence fertilization outcome in the pig. Reproduction. 2006;131:233-45.
29. Ge H, Tollner T, Hu Z, Dai M, Li X, Guan H, et al. The importance of mitochondrial metabolic activity and mitochondrial DNA replication during oocyte maturation in vitro on oocyte quality and subsequent embryo developmental competence. Mol Reprod Dev. 2012;79(6):392-401.
30. Camargo L, Viana J, Ramos A, Serapião R, de Sa W, Ferreira A, et al. Developmental competence and expression of the Hsp 70.1 gene in oocytes obtained from Bos indicus and Bos taurus dairy cows in a tropical environment. Theriogenology. 2007;68(4):626-32.
31. Paula-Lopes F, Chase C, Al-Katanani Y, Krininger C, Rivera R, Tekin S, et al. Genetic divergence in cellular resistance to heat shock in cattle: differences between breeds developed in temperate versus hot climates in responses of preimplantation embryos, reproductive tract tissues and lymphocytes to increased culture temperatures. Reproduction. 2003;125(2):285-94.
32. Hernández-Cerón J, Chase C, Hansen P. Differences in heat tolerance between preimplantation embryos from Brahman, Romosinuano, and Angus breeds. J Dairy Sci. 2004;87(1):53-8.
33. Chankitisakul V, Somfai T, Inaba Y, Techakumphu M, Nagai T. Supplementation of maturation medium with L-carnitine improves cryo-tolerance of bovine in vitro matured oocytes. Theriogenology. 2013;79(4):590-8.
34. Sutton-McDowall M, Feil D, Robker R, Thompson J, Dunning K. Utilization of endogenous fatty acid stores for energy production in bovine preimplantation embryos. Theriogenology. 2012;77(8):1632-41.

Publicado

2018-12-04

Cómo citar

1.
Mendez Y, Parra N, Baez F, Valeris R, Villamediana P. Contenido lipídico, actividad mitocondrial y desarrollo embrionario temprano de ovocitos provenientes de vacas mestizas (bos taurus indicus). RVZ [Internet]. 4 de diciembre de 2018 [citado 22 de julio de 2024];25(1):120-31. Disponible en: https://rvz.emnuvens.com.br/rvz/article/view/27

Número

Sección

Artículos Originales