Enterococcus faecium M7AN10 PROBIÓTICO EN MATRIZ ALIMENTARIA PARA PERROS
DOI:
https://doi.org/10.35172/rvz.2024.v31.1576Palabras clave:
Enterococcus faecium, probiótico, perros, matriz alimentaria canina, alimento probióticoResumen
Los probióticos son capaces de mejorar el equilibrio de la microbiota intestinal, aportando beneficios al huésped. Actualmente en el mercado existen pocas opciones de alimentos con probióticos en su composición, destinados a perros y gatos. Por lo tanto, el objetivo de este trabajo fue desarrollar una matriz alimentaria canina (comida húmeda) con el probiótico Enterococcus faecium M7AN10. Para ello se evaluó la inocuidad, actividad enzimática, actividad antimicrobiana, potencial probiótico y viabilidad del microorganismo en matriz alimentaria canina. El aislado fue considerado inofensivo, ya que no mostró actividad hemolítica ni gelatinasa, además de ser susceptible a varios antimicrobianos. E. faecium M7AN10 mostró actividad proteolítica y capacidad de producción de exoplisacáridos. En cuanto a la actividad antimicrobiana mediante el método de las estrías radiales, el aislado inhibió a Acinetobacter sp. 1, Corynebacterium sp. 4, Micrococcus luteus 33, Micrococcus luteus 43, Micrococcus sp. 3, Micrococcus sp. 20, Micrococcus sp. 36. Además, E. faecium M7AN10 mostró una capacidad de autoagregación del 33,50% y resistió consistentemente cuando se sometió al tracto gastrointestinal in vitro junto con Lacticaseibacillus rhamnosus LB 1.5 y Lacticaseibacillus paracasei LB 6.4. El cultivo mixto permaneció viable en una matriz de alimento canino durante un período de ocho días. Con base en estos resultados, el aislado E. faecium M7AN10 se consideró una bacteria candidata para un probiótico que podría usarse como aditivo en la comida para perros
Citas
Wernimont SM, Radosevich J, Jackson MI, Ephraim E, Badri DV, Macleay JM, Jewell DE, Suchodolski JS. The Effects of Nutrition on the Gastrointestinal Microbiome of Cats and Dogs: impact on health and disease. Front. Microbiol. 2020;11(1266):1-49. DOI: https://doi.org/10.3389/fmicb.2020.01266
Schmitz SS. Value of Probiotics in Canine and Feline Gastroenterology. Vet. Clin. North Am.: Small Anim. Practic. 2021;51(1):171-217. DOI: https://doi.org/10.1016/j.cvsm.2020.09.011
Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Lista de Matérias-Primas – Ingredientes e Aditivos - Aprovados pelo MAPA para uso na Alimentação Animal. 2022.
Agência Nacional De Vigilância Sanitária (ANVISA). Guia para Instrução Processual de Petição de Avaliação de Probióticos para uso em Alimentos. Guia n° 21, versão 2, Brasília, 2021.
Brandalize CC. Potencial probiótico de Enterococcus faecium isolados de queijo. Campo Mourão (Paraná): Universidade Tecnológica Federal do Paraná; 2013.
Kurtz JP, Paim WP, Jantzen MM, Motta AS. The Probiotic Properties of Enterococcus faecium Strains Isolated From Buffalo Milk: Food Matrix Studies. J. Clin. Nutr. Food Sci. 2021;4(1):17-29.
Breyer GM, Arechavaleta NN, Siqueira FM, Motta AS. Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a screening for novel probiotic candidates and their transcriptional response to acid stress. Probiotics Antimicrob. Proteins. 2020;13(2):468-483. DOI: https://doi.org/10.1007/s12602-020-09700-4
Nhu NTK, Phan MD, Forde BM, Murthy AMV, Peters KM, Day CJ, Poole J, Kidd TJ, Welch RA, Jennings MP, Ulett GC, Sweet MJ, Beatson SA, Schembri MA. Complex Multilevel Control of Hemolysin Production by Uropathogenic Escherichia coli. mBio. 2019;10(5):e02248-19. DOI: https://doi.org/10.1128/mBio.02248-19
Marra A, Dib-Hajj F, Lamb L, Kaczmarek F, Shang W, Beckius G, Milici AJ, Medina I, Gootz TD. Enterococcal virulence determinants may be involved in resistance to clinical therapy. Diagn. Microbiol. Infect. Dis. 2007;58(1):59-65. DOI: https://doi.org/10.1016/j.diagmicrobio.2006.11.024
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 1996;45(4):493-496. DOI: https://doi.org/10.1093/ajcp/45.4_ts.493
Clinical And Laboratory Standards Institute (CLSI). Performance standards for antimicrobial susceptibility testing; Twenty-Fifth Informational Supplement (M100-S25). Clinical and Laboratory Standards Institute, Wayne, PA, 2015.
European Committee On Antimicrobial Susceptibility Testing (EUCAST). Breakpoint tables for interpretation of MICs and zone diameters. Version 8.1, 2018.
Motta AS, Brandelli A. Characterization of an antibacterial peptide produced by Brevibacterium linens. J. Applid Microbiol. 2002;92(1):63-70. DOI: https://doi.org/10.1046/j.1365-2672.2002.01490.x
Coman MM, Verdenelli MC, Cecchini C, Silvi S, Orpianesi C, Boyko N, Cresci A. In vitro evaluation of antimicrobial activity of Lactobacillus rhamnosus IMC 501®, Lactobacillus paracasei IMC 502® and SYNBIO® against pathogens. J. Applied Microbiol. 2014;117(2):518-27. DOI: https://doi.org/10.1111/jam.12544
Raveschot C, Cudennec B, Deracinois B, Frémont M, Vaeremans M, Dugersuren J, Demberel S, Drider D, Dhulster P, Coutte F, Flahaut C. Proteolytic activity of Lactobacillus strains isolated from Mongolian traditional dairy products: A multiparametric analysis. Food Chem. 2020;304:125415. DOI: https://doi.org/10.1016/j.foodchem.2019.125415
Freeman DJ, Falkiner FA, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J. Clinic. Pathol. 1989;42(8):872-874. DOI: https://doi.org/10.1136/jcp.42.8.872
Del Re B, Sgorbati B, Miglioli M, Palenzona D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 2000;31(6):438-442. DOI: https://doi.org/10.1046/j.1365-2672.2000.00845.x
Iraporda C, Rubel IA, Manrique GD, Abraham AG. Influence in inulin rich carbohydrates from Jerusalem artichoke (Helianthus tuberosus L.) tubers on probiotic properties of Lactobacillus strains. LWT- Food Scienc. Technol. 2019;101:738–746. DOI: https://doi.org/10.1016/j.lwt.2018.11.074
Miles AA, Misra SS, Irwin J. The estimation of the bactericidal power of the blood. Epidemiol. Infect. 1938;38(6):732-749. DOI: https://doi.org/10.1017/S002217240001158X
Dinçer E, Kivanç M. In vitro evaluation of probiotic potential of Enterococcus faecium strains isolated from Turkish pastırma. Arch. Microbiol. 2021;203(6):2831-2841. DOI: https://doi.org/10.1007/s00203-021-02273-y
Fugaban JII, Holzapfel WH, Todorov SD. Probiotic potential and safety assessment of bacteriocinogenic Enterococcus faecium strains with antibacterial activity against Listeria and vancomycin-resistant enterococci. Curr. Res. Microb. Sci. 2021;2(100070):1-13. DOI: https://doi.org/10.1016/j.crmicr.2021.100070
Tan Q, Xu HY, Aguilar ZP, Peng S, Dong SQ, Wang BG, Li P, Chen TT, Xu F, Wei H. Safety Assessment and Probiotic Evaluation of Enterococcus faecium YF5 Isolated from Sourdough. J. Food Scienc. 2013;78(4):587-593. DOI: https://doi.org/10.1111/1750-3841.12079
Ghattargi VC, Nimonkar YS, Burse SA, Davray D, Kumbhare SV, Shetty SA, Gaikwad MA, Suryavanshi MV, Doijad SP, Utage B, Sharma OP, Shouche YS, Meti BS, Pawar SP. Genomic and physiological analyses of an indigenous strain, Enterococcus faecium 17OM39. Funct. Integr. Genomics. 2018;18:385-399. DOI: https://doi.org/10.1007/s10142-018-0596-x
Bindu A, Lakshmidevi N. Identification and in vitro evaluation of probiotic attributes of lactic acid bacteria isolated from fermented food sources. Arch. Microbiol. 2020;203(2):579-595. DOI: https://doi.org/10.1007/s00203-020-02037-0
Kim YB, Seo HJ, Seo KW, Jeon HJ, Kim DK, Kim SW, Lim S, Lee JL. Characteristics of High-Level Ciprofloxacin-Resistant Enterococcus faecalis and Enterococcus faecium from Retail Chicken Meat in Korea. J. Food Protect. 2018;81(8):1357-1363. DOI: https://doi.org/10.4315/0362-028X.JFP-18-046
Amachawadi RG, Giok F, Shi X, Soto J, Narayanan SK, Tokach MD, Apley MD, Nagaraja TG. Antimicrobial resistance of Enterococcus faecium strains isolated from commercial probiotic products used in cattle and swine. J. Anim. Sci. 2018;96(3):912-920. DOI: https://doi.org/10.1093/jas/sky056
Slyvka I, Tsisaryk O, Musii L, Kushnir I, Koziorowski M, Koziorowska A. Identification and Investigation of properties of strains Enterococcus spp. Isolated from artisanal Carpathian cheese. Biocatal. Agric. Biotechnol. 2022;39:102259. DOI: https://doi.org/10.1016/j.bcab.2021.102259
Paula PLM. Caracterização Tecnologica de Enterococcus faecium Isolados de Queijos Artesanais. Londrina (Paraná): Universidade Tecnológica Federal do Paraná, 2019.
Huang Y, Ye K, Yu K, Wang K, Zhou G. The potential influence of two Enterococcus faecium on the growth of Listeria monocytogenes. Food Control. 2016;67:18-24. DOI: https://doi.org/10.1016/j.foodcont.2016.02.009
Sharma P, Kaur S, Chadha BS, Kaur R, Kaur M, Kaur S. Anticancer and antimicrobial potential of enterocin 12a from Enterococcus faecium. Bmc Microbiol. 2021;21(39). DOI: https://doi.org/10.1186/s12866-021-02086-5
Rahmani M, Saffari F, Domann E, Zimmermann K, Langroudi L, Mansouri S. Enterococci as Intestinal Microbiota: Investigation of Characteristics and Probiotic Potential in Isolates from Adults and Breast‑Fed Infants. Probiotics Antimicrob. Proteins. 2022;14:1139–1150. DOI: https://doi.org/10.1007/s12602-022-09951-3
Kordesedehi R, Taheri-Kafrani A, Rabbani-Khorasgani M, Kazemi R, Mutangadura D, Haertle T. Modification of IgE binding to αS1-casein by proteolytic activity of Enterococcus faecium isolated from Iranian camel milk samples. J. Biotechnol. 2018;276-277:10-14. DOI: https://doi.org/10.1016/j.jbiotec.2018.04.005
Sousa MA, Muller MP, Berghahn E, Souza CFV, Granada CE. New enterococci isolated from cheese whey derived from different animal sources: High biotechnological potential as starter cultures. LWT - Food Sci. Technol. 2020;131:109808. DOI: https://doi.org/10.1016/j.lwt.2020.109808
Papadimitriou K, Venieraki A, Tsigkrimani M, Katinakis P, Skandamis PN. Whole-genome sequence data of the proteolytic and bacteriocin producing strain Enterococcus faecalis PK23 isolated from the traditional Halitzia cheese produced in Cyprus. Data Brief. 2021;38:107437. DOI: https://doi.org/10.1016/j.dib.2021.107437
Angelin J, Kavitha M. Exopolysaccharides from probiotic bacteria and their health potential. Int. J. Biol. Macromol. 2020;162:853-865. DOI: https://doi.org/10.1016/j.ijbiomac.2020.06.190
Song YR, Lee C, Lee SH, Baik SH. Evaluation of Probiotic Properties of Pediococcus acidilactici M76 Producing Functional Exopolysaccharides and Its Lactic Acid Fermentation of Black Raspberry Extract. Microorganisms. 2021;9(7):1364. DOI: https://doi.org/10.3390/microorganisms9071364
Espeche MC, Pellegrino M, Frola I, Larriestra A, Bogni C, Nader-Matías MEF. Lactic acid bacteria from raw milk as potentially beneficial strains to prevent bovine mastites. Anaerobe. 2012;18(1):103-109. DOI: https://doi.org/10.1016/j.anaerobe.2012.01.002
Zommiti M, Cambronel M, Maillot O, Barreau M, Sebei K, Feuilloley M, Ferchichi M, Connil N. Evaluation of Probiotic Properties and Safety of Enterococcus faecium Isolated From Artisanal Tunisian Meat “Dried Ossban”. Front. Microbiol. 2018;9(1685). DOI: https://doi.org/10.3389/fmicb.2018.01685
Santos KMO, Vieira AD, Salles HO, Oliveira JS, Rocha CR, Borges MF, Bruno LM, Franco BD, Todorov SD. Safety, beneficial and technological properties of Enterococcus faecium isolated from Brazilian cheeses. Braz. J. Microbiol. 2015;46(1):237-49. DOI: https://doi.org/10.1590/S1517-838246120131245
Amaral DMF, Silva LF, Casarotti SN, Nascimento LCS, Penna ALB. Enterococcus faecium and Enterococcus durans isolated from cheese: survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J. Dairy Sci. 2017;100(2):933-949. DOI: https://doi.org/10.3168/jds.2016-11513
Succi M, Tremonte P, Real A, Sorrentino E, Grazia L, Pacífico S, Coppola R. Bile salt and acid tolerance of Lactobacillus rhamnosus strains isolated from Parmigiano Reggiano cheese. FEMS Microbiol. Lett. 2005;244:129-137. DOI: https://doi.org/10.1016/j.femsle.2005.01.037
Sornsenee P, Singkhamanan K, Sangkhathat S, Saengsuwan P, Romyasamit C. Probiotic Properties of Lactobacillus Species Isolated from Fermented Palm Sap in Thailand. Probiotics Antimicrob. Proteins. 2021;13(4):957-969. DOI: https://doi.org/10.1007/s12602-021-09754-y
Vasconcelos SSRSL. Uso De Probióticos Manipulados e Seus Efeitos na Saúde de Cães e Gatos: Uma Revisão de Literatura. João Pessoa (Paraíba): Universidade Federal da Paraíba, 2018.
Reis TL, Vieites FM. Antibiotic, prebiotic, probiotic and symbiotic in feeeds of broiler chickens and laying hens. Ciênc. Anim. 2019;29(3):133-147.
Oliveira CR, Mariani AB, Carvalho CL, Galli GM, Andretta I. Uso De Probióticos Na Produção De Suínos: Revisão. Capítulo 71. In: Produção Animal e Vegetal: Inovações e Atualidades. Agron Food Academy, 2021. DOI: https://doi.org/10.53934/9786599539633-71
Torres-Henderson C, Summers S, Suchodolski J, Lappin MR. Effect of Enterococcus Faecium Strain SF68 on Gastrointestinal Signs and Fecal Microbiome in Cats Administered Amoxicillin-Clavulanate. Top. Companion Anim. Med. 2017;32:104–108. DOI: https://doi.org/10.1053/j.tcam.2017.11.002
Cao GT, Zeng XF, Chen AG, Zhou L, Zhang L, Xiao YP, Yang CM. Effects of a probiotic, Enterococcus faecium, on growth performance, intestinal morphology, immune response, and cecal microflora in broiler chickens challenged with Escherichia coli K88. Poult. Sci. 2013;92(11):2949-2955. DOI: https://doi.org/10.3382/ps.2013-03366
Huang LQ, Luo L, Zhang Y, Wang Z, Xia ZF. Effects of the Dietary Probiotic, Enterococcus faecium NCIMB11181, on the Intestinal Barrier and System Immune Status in Escherichia coli O78-Challenged Broiler Chickens. Probiotics Antimicrob. Proteins. 2019;11:946-956. DOI: https://doi.org/10.1007/s12602-018-9434-7
Taras D, Vahjen W, Macha M, Simão Ó. Performance, diarrhea incidence, and occurrence of Escherichia coli virulence genes during long-term administration of a probiotic Enterococcus faecium strain to sows and piglets. J. Anim. Sci. 2006;84:608–617. DOI: https://doi.org/10.2527/2006.843608x
Machado TOX, Mesquita RVSC, Silva VO, Araújo MB, Oliveira APD, Souza JV, Lima MS, Dias FS, Peixoto RM. Effect of the application of probiotic strains of Enterococcus faecium on the physicochemical and sensory characteristics of coalho cheese. Semin. Cienc. Agrar. 2021;42(1):167-178. DOI: https://doi.org/10.5433/1679-0359.2021v42n1p167
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.