VIABILIDADE DE Lacticaseibacillus rhamnosus LB1.5 PROBIÓTICO EM SORVETE FUNCIONAL
DOI:
https://doi.org/10.35172/rvz.2024.v31.1618Palavras-chave:
alimentos funcionais, bioprotetor, Lacticaseibacillus, Listeria sp., probióticoResumo
Bactérias ácido-lácticas são microrganismos com diversas aplicações na indústria de alimentos, considerando o potencial tecnológico, o incremento nas características sensoriais dos produtos e a capacidade probiótica de alguns isolados. Alimentos funcionais, além de aplicação nutricional, possuem efeito benéfico à saúde. O objetivo do presente estudo foi selecionar bactérias lácticas isoladas de leite cru de búfala quanto as propriedades tecnológicas e desenvolver sorvete enriquecido com bactéria probiótica Lacticaseibacillus rhamnosus LB1.5. Para tanto, BALs foram selecionadas quanto a capacidade proteolítica, capacidade de coexistência com bactérias lácticas, atividade antimicrobiana e antilisteria, estabilidade com conservantes alimentares e viabilidade em sorvete. A proteólise foi avaliada inoculando-se as BAL ágar leite. A coexistência entre as bactérias lácticas foi avaliada pelo método da picada. A atividade antimicrobiana de BALs frente à L.monocytogenes ATCC 7644, E.coli ATCC 10536, Pseudomonas aeruginosa ATCC 27853 e Staphylococcus aureus ATCC 25923 foi avaliada pelo método de sobrecamada. As espécies de L.innocua, L.monocytogenes e L.seeligeri também foram empregadas como indicadoras. Os experimentos foram realizados em triplicata e os resultados mensurados pelo halo de inibição de crescimento. Lact. rhamnosus LB 1.5 e Lact. paracasei LB 6.4 foram expostos a nisina, pediocina e conservante sorbato de potássio, através de ensaio de difusão em ágar leite. Por fim, a viabilidade de Lact. rhamnosus LB1.5 em sorvete foi avaliada por 210 dias. Dentre os onze isolados estudados, apenas Lacticaseibacillus sp. M1A3 não apresentou atividade proteolítica. Lact. rhamnosus LB1.5 e Lact. paracasei LB6.4 demonstraram capacidade de associação com Lact. paracasei LB1.4, Lactococcus lactis (L4A8, L4AN1 e L4AN17) e Leuconostoc mesenteroides LB5.5, o que possibilita a aplicação simbiótica destes isolados. Quanto à atividade antimicrobiana, Lact. paracasei LB 6.4 e Lact. rhamnosus LB1.5 inibiram as espécies de Listeria spp., sugerindo potencial bioprotetor. Os resultados evidenciaram sensibilidade de ambas BALs selecionadas à nisina, com halos de inibição de crescimento com diâmetro médio igual ou superior a 11 mm e 18 mm. Porém, pediocina e sorbato de potássio não inibiram o crescimento dos Lactobacillus selecionados, podendo atuar como conservantes associados a estes isolados. Lact. rhamnosus LB1.5 manteve-se viável em sorvete durante os 210 dias de experimento, com valores médios superiores a 107 UFC/mL, possibilitando a aplicação deste em produto como sorvete, além de oferecer benefícios bioprotetores e funcionais ao produto.
Referências
Bailone RL, Borra RC, Roça RO, Aguiar LD, Harris M. Qualidade do leite cru refrigerado de búfalas (Bubalus bubalis bubalis) em diferentes fazendas e estações do ano no Brasil. Ciência Animal Brasileira, 2017; 18. https://doi.org/10.1590/1089-6891v18e-41815 DOI: https://doi.org/10.1590/1089-6891v18e-41815
Breyer GM, Arechavaleta NN, Siqueira FM, Motta AS. Characterization of Lactic Acid Bacteria in Raw Buffalo Milk: a Screening for Novel Probiotic Candidates and Their Transcriptional Response to Acid Stress. Probiotics and Antimicrobial Proteins, 2021; 13: 468-483. https://doi.org/10.1007/s12602-020-09700-4 DOI: https://doi.org/10.1007/s12602-020-09700-4
Food and Agricultural Organization of the United Nations and World Health Organiza-tion, FAO/WHO. Working Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. Food and Agricultural Organization of the United Nations, London, Ontario, Canada, 2002. ftp://ftp.fao.org/es/esn/food/wgreport2.pdf
Alameri F, Tarique M, Osaili, T, Obaid R, Abdalla A, Masad R, et al. Lactic Acid Bacteria Isolated from Fresh Vegetable Products: Potential Probiotic and Postbiotic Characteristics Including Immunomodulatory Effects, Microorganisms, 2022; 10(2):389. https://doi.org/10.3390/microorganisms10020389 DOI: https://doi.org/10.3390/microorganisms10020389
Albuquerque AP, Rodrigues TJA, Cavalcante Neto JL, Rocha APT. Utilization of pow-dered fruit pulp probiotic loaders as a functional food: general aspects and perspectives. Brazilian Journal of Food Technology, 2021; 24:e2019310. https://doi.org/10.1590/1981-6723.31019 DOI: https://doi.org/10.1590/1981-6723.31019
Halder D, Mandal M, Chatterjee SS, Pal NK, Mandal S. Indigenous probiotic Lactobacil-lus isolates presenting antibiotic like activity against human pathogenic bacteria. Biomedi-cines, 2017; 5(2): 31. https://doi.org/10.3390/biomedicines5020031 DOI: https://doi.org/10.3390/biomedicines5020031
de Castilho NPA, Nero LA & Todorov SD. Molecular screening of beneficial and safety determinants from bacteriocinogenic lactic acid bacteria isolated from Brazilian artisanal calabresa. Letters in applied microbiology; 2019; 69(3): 204-211. https://doi.org/10.1111/lam.13194 DOI: https://doi.org/10.1111/lam.13194
Coman MM, Mazzotti L, Silvi S, Scalise A, Orpianesi C, Cresci A, Verdenelli MC. Anti-microbial activity of SYNBIO® probiotic formulation in pathogens isolated from chronic ulcerative lesions: in vitro studies. Journal of Applied Microbiology, 2020; 128(2): 584-597. https://doi.org/10.1111/jam.14482 DOI: https://doi.org/10.1111/jam.14482
Ibrahim SA, Ayivi RD, Zimmerman T, Siddiqui SA, Altemimi AB, Fidan H, et al. Lactic Acid Bacteria as Antimicrobial Agents: Food Safety and Microbial Food Spoilage Preven-tion. Foods, 2021; 10(12): 3131. https://doi.org/10.3390/foods10123131 DOI: https://doi.org/10.3390/foods10123131
Aragon-Alegro LC, Lima EMF, Palcich G, Nunes TP, Souza KLO, Martins CG, et al. Lis-teria monocytogenes inhibition by lactic acid bacteria and coliforms in Brazilian fresh white cheese. Brazilian Journal of Microbiology, 2021; 52(2):847-858. https://doi.org/10.1007/s42770-021-00431-4 DOI: https://doi.org/10.1007/s42770-021-00431-4
Duarte MC, Cortez N, Cortez MA, Franco R. Ação antagonista de bactérias láticas frente ao crescimento de estirpe patogênica. Enciclopédia Biosfera, 2013; 9(16). https://conhecer.org.br/ojs/index.php/biosfera/article/view/3337
Hassan MU, Nayab H, Shafique F, Williamson MP, Almansouri TS, Asim N, et al. Probi-otic Properties of Lactobacillus helveticus and Lactobacillus plantarum Isolated from Tra-ditional Pakistani Yoghurt. BioMed Research International, 2020; 2020, Article ID 8889198:17. https://doi.org/10.1155/2020/8889198 DOI: https://doi.org/10.1155/2020/8889198
Hernández-González JC, Martínez-Tapia A, Lazcano Hernández G, García-Pérez BE, Cas-trejón-Jiménez NS. Bacteriocins from lactic acid bacteria. A powerful alternative as anti-microbials, probiotics, and immunomodulators in veterinary medicine. Animals, 2021 ; 11(4) : 979. https://doi.org/10.3390/ani11040979 DOI: https://doi.org/10.3390/ani11040979
Afzaal M, Saeed F, Arshad MU, Nadeem MT, Saeed M, Tufail T. The Effect of Encapsu-lation on The Stability of Probiotic Bacteria in Ice Cream and Simulated Gastrointestinal Conditions. Probiotics and Antimicrobial Protein, 2019; 11:1348–1354. https://doi.org/10.1007/s12602-018-9485-9 DOI: https://doi.org/10.1007/s12602-018-9485-9
Bernal-Castro CA, Díaz-Moreno C, Gutiérrez-Cortés C. Inclusion of prebiotics on the via-bility of a commercial Lactobacillus casei subsp. rhamnosus culture in a tropical fruit bev-erage. Journal of food science and technology, 2019; 56 (2): 987-994. https://doi.org/10.1007/s13197-018-03565-w DOI: https://doi.org/10.1007/s13197-018-03565-w
Londoño-Zapata AF, Durango-Zuleta MM, Sepúlveda-Valencia JU, Herrera CXM. Char-acterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT-Food Science and Technology, 2017; 82:39-48. https://doi.org/10.1016/j.lwt.2017.03.058 DOI: https://doi.org/10.1016/j.lwt.2017.03.058
Sabo SS, Mendes MA, Araujo ES, Muradian LBA, Makiyama EN, LeBlanc JG, et al. Bi-oprospecting of probiotics with antimicrobial activities against Salmonella Heidelberg and that produce B-complex vitamins as potential supplements in poultry nutrition. Sci Rep, 2020; 10(1):1-14. https://doi.org/10.1038/s41598-020-64038-9 DOI: https://doi.org/10.1038/s41598-020-64038-9
Rotta IS, Da Matta MF, dos Santos CTB, Paiva AD, Machado ABF. Bactérias do ácido lático potencialmente probióticas isoladas de leite não pasteurizado. Revista do Instituto de Laticínios Cândido Tostes, 2020; 75(3):178-189. https://doi.org/10.14295/2238-6416.v75i3.820 DOI: https://doi.org/10.14295/2238-6416.v75i3.820
Motta AS, Flores FS, Souto AA, Brandelli A. Antibacterial activity of a bacteriocin-like substance produced by Bacillus sp. P34 that targets the bacterial cell envelope. Antonie van Leeuwenhoek, 2008; 93(9): 275–284. https://doi.org/10.1007/s10482-007-9202-2 DOI: https://doi.org/10.1007/s10482-007-9202-2
Miles AA, Misra SS, Irwin J. The estimation of the bactericidal power of the blood. Epi-demiology & Infection. 1938;38(6):732-49. doi:10.1017/S002217240001158X DOI: https://doi.org/10.1017/S002217240001158X
Rolim FRL, Neto OCF, Oliveira MEG, Oliveira CJB, Queiroga RCRE. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends in Food Science & Technology, 2020; 100:138-154. https://doi.org/10.1016/j.tifs.2020.04.008 DOI: https://doi.org/10.1016/j.tifs.2020.04.008
Balthazar CF, Pimentel TC, Ferrão LL, Almada CN, Santillo A, Al-Benzio M, et al. Sheep milk: physicochemical characteristics and relevance for functional food development. Comprehensive Reviews in Food Science and Food Safety, 2017; 16(2):247-262. https://doi.org/10.1111/1541-4337.12250 DOI: https://doi.org/10.1111/1541-4337.12250
Mechai A, Debabza M, Kirane D. Screening of technological and probiotic properties of lactic acid bacteria isolated from Algerian traditional fermented milk products. Interna-tional Food Research Journal, 2014; 21(6):2451-2457.
Casarotti SN, Penna ALB. Acidification profile, probiotic in vitro gastrointestinal toler-ance and viability in fermented milk with fruit flours. International Dairy Journal, 2015; 41:1-6. https://doi.org/10.1016/j.idairyj.2014.08.021 DOI: https://doi.org/10.1016/j.idairyj.2014.08.021
Leclercq S, Mian FM, Stanisz AM, Bindels LB, Cambier E, Ben-Amram H, et al. Low-dose penicillin in early life induces long-term changes in murine gut microbiota, brain cy-tokines and behavior. Nature Communications, 2017; 8(1):1-12. https://doi.org/10.1038/ncomms15062 DOI: https://doi.org/10.1038/ncomms15062
Salehizadeh M, Modarressi MH, Mousavi SN, Ebrahimi MT. Evaluation of lactic acid bac-teria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium. In Veterinary Research Forum, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, 2020; 11(1):67. doi: 10.30466/vrf.2018.84395.2110
Costa GN, Miglioranza LHS. Probiotics: The Effects on Human Health and Current Pro-spects. In: RIGOBELO, E.C. (Org.). Probiotics: InTech. 2012; cap.158.
Mirkovic N, Kulas J, Miloradovic Z, Miljkovic M, Tucovic D, Miocinovic J, et al. Lactolis-terin BUproducer Lactococcus lactis subsp. lactis BGBU1-4: Bio-control of Listeria mon-ocytogenes and Staphylococcus aureus in fresh soft cheese and effect on immunological response of rats. Food Control, 2020; 111:107076. https://doi.org/10.1016/j.foodcont.2019.107076 DOI: https://doi.org/10.1016/j.foodcont.2019.107076
Carolina ND, Nestor GM. Autolytic and proteolytic properties of strains of Lactococcus lactis isolated from different vegetables, raw-milk cheeses and commercial starter cultures. Food and Nutrition Sciences, 2013; 4:21-26. DOI:10.4236/fns.2013.411A004 DOI: https://doi.org/10.4236/fns.2013.411A004
Vitola HRS, Gandra EA, Frazzon APG, Dannenberg GS, Motta AS. Efeito de nisina e pediocina sobre culturas de Staphylococcus aureus isoladas de carcaça de frango. Revista Brasileira de Biociências, 2018; 16(1):21-27.
Cotter PD, Ross RP, Hill C. Bacteriocins—a viable alternative to antibiotics? Nature Re-views Microbiology, 2013; 11:95–105. https://doi.org/10.1038/nrmicro2937 DOI: https://doi.org/10.1038/nrmicro2937
Pattanayaiying R, H-Kittikun A, Cutter CN. Incorporation of nisin Z and lauric arginate into pullulan films to inhibit foodborne pathogens associated with fresh and ready-to-eat -muscle foods. International Journal of Food Microbiology, 2015; 207:77-82. https://doi.org/10.1016/j.ijfoodmicro.2015.04.045 DOI: https://doi.org/10.1016/j.ijfoodmicro.2015.04.045
Kaur G, Singh TP, Malik RK. Antibacterial efficacy of Nisin, Pediocin 34 and Enterocin FH99 against Listeria monocytogenes and cross resistance of its bacteriocin resistant vari-ants to common food preservatives. Brazilian Journal of Microbiology, 2013; 44(1): 63-71. https://doi.org/10.1590/S1517-83822013005000025 DOI: https://doi.org/10.1590/S1517-83822013005000025
BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. Instrução Nor-mativa nº 28, de 26 de julho de 2018. Diário Oficial da União, Brasília, nº144, Seção 1, p. 141-154, 27 Jul. 2018.
Shori AB, Aljohani GS, Al-Zahrani AJ, Al-Sulbi OS, Baba AS. Viability of probiotics and antioxidant activity of cashew milk-based yogurt fermented with selected strains of probi-otic Lactobacillus spp. LWT, 2022; 153:112482. https://doi.org/10.1016/j.lwt.2021.112482 DOI: https://doi.org/10.1016/j.lwt.2021.112482
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Nathasha Noronha Arechavaleta, Amanda Souza da Motta
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial 4.0 International License.
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.