DIAGNÓSTICO SOROLÓGICO E MOLECULAR DE Toxoplasma gondii EM PRIMATAS NÃO HUMANOS EM PARQUE ZOOLÓGICO
DOI:
https://doi.org/10.35172/rvz.2024.v31.1521Palabras clave:
toxoplasmosis, primates en cautiverio, serologia, factores de riesgoResumen
La participación de animales salvajes como reservorios o portadores de zoonosis en la naturaleza y en cautividad es una preocupación emergente debido al potencial de transmisión de agentes zoonóticos, como la toxoplasmosis. Este estudio verifica los factores de riesgo asociados a la prevalencia de la infección por Toxoplasma gondii en primates de zoológico. Se analizaron muestras de suero de 43 primates para detectar anticuerpos contra T. gondii mediante las técnicas serológicas de prueba de aglutinación modificada (MAT) y reacción de inmunofluorescencia indirecta (IFI) (punto de corte ≥ 25) y la técnica molecular de reacción en cadena de la polimerasa (PCR); se encontraron anticuerpos en el 37,2% (16/43) de los animales, entre las especies 8/43 fueron serorreactivas para ambas técnicas, 8/43 sólo para MAT y 2/43 para IFI. Ninguna muestra fue positiva en PCR. Los factores de riesgo estudiados como sexo, edad y categoría (viejo mundo y neotropical) no fueron estadísticamente significativos (<0,01), sin embargo, los resultados indican que los factores relacionados con la alimentación y la arena presente en los recintos de los animales no fueron analizados, pero mostraron ser una causa potencial de la alta prevalencia de anticuerpos en los animales encuestados del Parque Zoológico, Por lo tanto, es necesario el monitoreo constante de la infección, a través de pruebas serológicas periódicas, así como cuidados relacionados con los factores de riesgo, como el origen de la arena utilizada en los recintos y la limpieza adecuada de las frutas y verduras suministradas a los animales como forma de prevenir la infección tanto para los empleados como para el público visitante.
Citas
Muñoz R, Hidalgo-Hermoso E, Fredes F, Alegría-Morán R, Celis S, Ortiz-Tacci C, et al. Serological prevalence and risk factors of Toxoplasma gondii in Zoo Mammals in Chile. Prev Vet Med. 2021 Sep 1;194. DOI: https://doi.org/10.1016/j.prevetmed.2021.105445
DUBEY JP. Toxoplasmosis of Animals and Humans. 2nd ed. Dubey J, editor. Boca Raton: CRC Press; 2010.
Paula NF de, Dutra KS, Oliveira AR de, Santos DO dos, Rocha CEV, Vitor RW de A, et al. Host range and susceptibility to Toxoplasma gondii infection in captive Neotropical and Old-world primates. J Med Primatol. 2020 Aug 1;49(4):202-10. DOI: https://doi.org/10.1111/jmp.12470
Niehaus C, Spínola M, Su C, Rojas N, Rico-Chávez O, Ibarra-Cerdeña CN, et al. Environmental factors associated with Toxoplasma gondii Exposure in Neotropical Primates of Costa Rica. Front Vet Sci. 2020 Oct 22;7. DOI: https://doi.org/10.3389/fvets.2020.583032
Minervino AHH, Cassinelli ABM, de Souza AJS, Alves MM, Soares M do CP, Ferreira DAC, et al. Detection of Toxoplasma gondii antibodies in captive non-human primates in the Amazon region, Brazil. J Med Primatol. 2017 Dec 1;46(6):343-6. DOI: https://doi.org/10.1111/jmp.12314
Desmonts' And G, Remington2 JS. Direct Agglutination Test for Diagnosis of Toxoplasma Infection: Method for Increasing Sensitivity and Specificity. Vol. 11, Journal of Clinical Microbiology. 1980. DOI: https://doi.org/10.1128/jcm.11.6.562-568.1980
Pimentel JS, Gennari SM, Dubey JP, Marvulo MF, Vasconcellos SA, Morais ZM, et al. Serological survey for toxoplasmosis and leptospirosis in neotropical wild mammals of the Aracaju Zoo, Sergipe. Vol. 29, Bras. 2009. DOI: https://doi.org/10.1590/S0100-736X2009001200010
Pena HFJ, Marvulo MFV, Horta MC, Silva MA, Silva JCR, Siqueira DB, et al. Isolation and genetic characterisation of Toxoplasma gondii from a red-handed howler monkey (Alouatta belzebul), a jaguarundi (Puma yagouaroundi), and a black-eared opossum (Didelphis aurita) from Brazil. Vet Parasitol. 2011 Feb 10;175(3-4):377–81. DOI: https://doi.org/10.1016/j.vetpar.2010.10.015
Alvarado-Esquivel C, Gayosso-Dominguez EA, Villena I, Dubey JP. Seroprevalence of Toxoplasma gondii infection in captive mammals in three zoos in Mexico city, Mexico. Journal of Zoo and Wildlife Medicine. 2013 Sep;44(3):803-6. DOI: https://doi.org/10.1638/2013-0032.1
Ferreira DRA, Ribeiro VO, Laroque PO, Wagner PGC, Pinheiro Júnior JW, Silva JCA, et al. Risk factors associated with Toxoplasma gondii infection in captive Sapajus spp. Am J Primatol. 2015 May 1;77(5):558-62. DOI: https://doi.org/10.1002/ajp.22377
Smith JCR. Toxoplasmosis. In: Cubas ZS, Silva JCR, Catao Dias JL, editors. Wildlife Treaty. São Paulo: Roca; 2006. pp. 768-84.
Da Silva RC, Langoni H, Su C, Da Silva AV. Genotypic characterization of Toxoplasma gondii in sheep from Brazilian slaughterhouses: New atypical genotypes and the clonal type II strain identified. Vet Parasitol. 2011;175(1-2):173-7. DOI: https://doi.org/10.1016/j.vetpar.2010.09.021
Camargo M. Fluorescent antibody test for the serodiagnosis of American trypanosomiasis. Technical modification employing preserved culture forms of Trypanosoma cruzi in a slide test. Rev Inst Med Trop. 1966;8:227-34.
Homan W, Vercammen M, Braekeleer J De, Verschueren H. Identification of a 200-to 300-fold repetitive 529bp DNA fragment in Toxoplasma gondii and its use for diagnostic and quantitative PCR. Int J Parasitol. 2000;30:69-75. DOI: https://doi.org/10.1016/S0020-7519(99)00170-8
Dubey JP, Murata FHA, Cerqueira-Cézar CK, Kwok OCH, Yang Y, Su C. Recent epidemiologic, clinical, and genetic diversity of Toxoplasma gondii infections in non-human primates. Vol. 136, Research in Veterinary Science. Elsevier B.V.; 2021. pp. 631-41. DOI: https://doi.org/10.1016/j.rvsc.2021.04.017
Grumann MR, Da Silva Z, Son JRS, Costa MM, Vieira MIB, Da Motta AC. Immunohistochemical and serological aspects of Toxoplasma gondii infection in Neotropical primates. Semi:Agricultural Sciences. 2017 May 1;38(3):1375-82. DOI: https://doi.org/10.5433/1679-0359.2017v38n3p1375
Silva RC da, Machado GP, Cruvinel TM de A, Cruvinel CA, Langoni H. Frequency of Toxoplasma gondii antibodies in tufted capuchin monkeys (Cebus apella nigritus) from an ecological station in the State of São Paulo, Brazil. Pesq Vet Bras. 2013;33(2):251-3. DOI: https://doi.org/10.1590/S0100-736X2013000200019
Cano-Terriza D, Almería S, Caballero-Gómez J, Díaz-Cao JoséM, Jiménez-Ruiz S, Dubey JP, et al. Serological survey of Toxoplasma gondii in captive nonhuman primates in zoos in Spain. Comp Immunol Microbiol Infect Dis. 2019 Aug;65:54-7. DOI: https://doi.org/10.1016/j.cimid.2019.04.002
Akue JP, Tomo NE, Badiambile J, Moukana H, Mbou-Mountsimbi RA, Ngoubangoye B. Seroprevalence of Toxoplasma gondii and Neospora caninum in non-human primates at a primate center at Franceville, Gabon. Journal of Parasitology and Vector Biology [Internet]. 2018;10(1):1–7. Available from: http://www.academicjournals.org/JPVB
Villar-Echarte G, Arruda IF, Barbosa A da S, Guzmán RG, Augusto AM, Troccoli F, et al. Toxoplasma gondii among captive wild mammals in zoos in Brazil and Cuba: seroprevalence and associated risk factors. Brazilian Journal of Veterinary Parasitology. 2021;30(2). DOI: https://doi.org/10.1590/s1984-29612021053
Xin S, Jiang N, Yang L, Zhu N, Huang W, Li J, et al. Isolation, genotyping and virulence determination of a Toxoplasma gondii strain from non-human primate from China. Transbound Emerg dis. 2022 Mar 1;69(2):919-25. DOI: https://doi.org/10.1111/tbed.14047
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Este obra está licenciado com uma Licença Creative Commons Atribuição-NãoComercial 4.0 Internacional.